598 research outputs found
Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels
Experimental signals of non-linear magneto-optical resonances at D1
excitation of natural rubidium in a vapor cell have been obtained and described
with experimental accuracy by a detailed theoretical model based on the optical
Bloch equations. The D1 transition of rubidium is a challenging system to
analyze theoretically because it contains transitions that are only partially
resolved under Doppler broadening. The theoretical model took into account all
nearby transitions, the coherence properties of the exciting laser radiation,
and the mixing of magnetic sublevels in an external magnetic field and also
included averaging over the Doppler profile. Great care was taken to obtain
accurate experimental signals and avoid systematic errors. The experimental
signals were reproduced very well at each hyperfine transition and over a wide
range of laser power densities, beam diameters, and laser detunings from the
exact transition frequency. The bright resonance expected at the F_g=1 -->
F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at
the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position
of the transition due to the influence of the nearby F_g=2 --> F_e=2
transition, which is a dark resonance whose contrast is almost two orders of
magnitude larger than the contrast of the bright resonance at the F_g=2 -->
F_e=3 transition. Even in this very delicate situation, the theoretical model
described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure
Spin-orbit coupling in ferromagnetic Nickel
We use the Gutzwiller variational theory to investigate the electronic and
the magnetic properties of fcc-Nickel. Our particular focus is on the effects
of the spin-orbit coupling. Unlike standard relativistic band-structure
theories, we reproduce the experimental magnetic moment direction and we
explain the change of the Fermi-surface topology that occurs when the magnetic
moment direction is rotated by an external magnetic field. The Fermi surface in
our calculation deviates from early de-Haas--van-Alphen (dHvA) results. We
attribute these discrepancies to an incorrect interpretation of the raw dHvA
data.Comment: 4 pages, 3 figures, submitted to PR
About the strength of correlation effects in the electronic structure of iron
The strength of electronic correlation effects in the spin-dependent
electronic structure of ferromagnetic bcc Fe(110) has been investigated by
means of spin and angle-resolved photoemission spectroscopy. The experimental
results are compared to theoretical calculations within the three-body
scattering approximation and within the dynamical mean-field theory, together
with one-step model calculations of the photoemission process. This comparison
indicates that the present state of the art many-body calculations, although
improving the description of correlation effects in Fe, give too small mass
renormalizations and scattering rates thus demanding more refined many-body
theories including non-local fluctuations.Comment: 4 pages, 4 figure
Spin Screening and Antiscreening in a Ferromagnet/Superconductor Heterojunction
We present a theoretical study of spin screening effects in a
ferromagnet/superconductor (F/S) heterojunction. It is shown that the magnetic
moment of the ferromagnet is screened or antiscreened, depending on the
polarization of the electrons at the Fermi level. If the polarization is
determined by the electrons of the majority (minority) spin band then the
magnetic moment of the ferromagnet is screened (antiscreened) by the electrons
in the superconductor. We propose experiments that may confirm our theory: for
ferromagnetic alloys with certain concentration of Fe or Ni ions there will be
screening or antiscreening respectively. Different configurations for the
density of states are also discussed.Comment: 5 pages; 4 figures. to be published in Phys. Rev,
Geometric, electronic, and magnetic structure of CoFeSi: Curie temperature and magnetic moment measurements and calculations
In this work a simple concept was used for a systematic search for new
materials with high spin polarization. It is based on two semi-empirical
models. Firstly, the Slater-Pauling rule was used for estimation of the
magnetic moment. This model is well supported by electronic structure
calculations. The second model was found particularly for Co based Heusler
compounds when comparing their magnetic properties. It turned out that these
compounds exhibit seemingly a linear dependence of the Curie temperature as
function of the magnetic moment. Stimulated by these models, CoFeSi was
revisited. The compound was investigated in detail concerning its geometrical
and magnetic structure by means of X-ray diffraction, X-ray absorption and
M\"o\ss bauer spectroscopies as well as high and low temperature magnetometry.
The measurements revealed that it is, currently, the material with the highest
magnetic moment () and Curie-temperature (1100K) in the classes of
Heusler compounds as well as half-metallic ferromagnets. The experimental
findings are supported by detailed electronic structure calculations
Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel
We measure the band structure of nickel along various high-symmetry lines of
the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The
Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters
are obtained from non-magnetic density-functional theory resolves most of the
long-standing discrepancies between experiment and theory on nickel. Thereby we
support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl
Multi-band Gutzwiller wave functions for general on-site interactions
We introduce Gutzwiller wave functions for multi-band models with general
on-site Coulomb interactions. As these wave functions employ correlators for
the exact atomic eigenstates they are exact both in the non-interacting and in
the atomic limit. We evaluate them in infinite lattice dimensions for all
interaction strengths without any restrictions on the structure of the
Hamiltonian or the symmetry of the ground state. The results for the
ground-state energy allow us to derive an effective one-electron Hamiltonian
for Landau quasi-particles, applicable for finite temperatures and frequencies
within the Fermi-liquid regime. As applications for a two-band model we study
the Brinkman-Rice metal-to-insulator transition at half band-filling, and the
transition to itinerant ferromagnetism for two specific fillings, at and close
to a peak in the density of states of the non-interacting system. Our new
results significantly differ from those for earlier Gutzwiller wave functions
where only density-type interactions were included. When the correct spin
symmetries for the two-electron states are taken into account, the importance
of the Hund's-rule exchange interaction is even more pronounced and leads to
paramagnetic metallic ground states with large local magnetic moments.
Ferromagnetism requires fairly large interaction strengths, and the resulting
ferromagnetic state is a strongly correlated metal.Comment: 37 pages, 10 figures; accepted for publication in Phys. Rev. B 57
(March 15, 1998
Why is the bandwidth of sodium observed to be narrower in photoemission experiments?
The experimentally predicted narrowing in the bandwidth of sodium is
interpreted in terms of the non-local self-energy effect on quasi-particle
energies of the electron liquid. The calculated self-energy correction is a
monotonically increasing function of the wavenumber variable. The usual
analysis of photo-emission experiments assumes the final state energies on the
nearly-free-electron-like model and hence it incorrectly ascribes the non-local
self-energy correction to the final state energies to the occupied state
energies, thus leading to a seeming narrowing in the bandwidth.Comment: 9 page
Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh
Based on ab initio total energy calculations we show that two magnetic states
of rhodium atoms together with competing ferromagnetic and antiferromagnetic
exchange interactions are responsible for a temperature induced metamagnetic
phase transition, which experimentally is observed for stoichiometric
alpha-FeRh. A first-principle spin-based model allows to reproduce this
first-order metamagnetic transition by means of Monte Carlo simulations.
Further inclusion of spacial variation of exchange parameters leads to a
realistic description of the experimental magneto-volume effects in alpha-FeRh.Comment: 10 pages, 13 figures, accepted for publication in Phys. Rev.
Studies of Vibrational Properties in Ga Stabilized d-Pu by Extended X-ray Absorption Fine Structure
Temperature dependent extended x-ray absorption fine structure (EXAFS)
spectra were measured for a 3.3 at% Ga stabilized Pu alloy over the range T= 20
- 300 K at both the Ga K-edge and the Pu L_III-edge. The temperature dependence
of the pair-distance distribution widths, \sigma(T) was accurately modeled
using a correlated-Debye model for the lattice vibrational properties,
suggesting Debye-like behavior in this material. We obtain pair- specific
correlated-Debye temperatures, \Theta_cD, of 110.7 +/- 1.7 K and 202.6 +/- 3.7
K, for the Pu-Pu and Ga-Pu pairs, respectively. These results represent the
first unambiguous determination of Ga-specific vibrational properties in PuGa
alloys, and indicate the Ga-Pu bonds are significantly stronger than the Pu-Pu
bonds. This effect has important implications for lattice stabilization
mechanisms in these alloys.Comment: 7 pages, 4 figures, Phys. Rev. B in pres
- …