10 research outputs found
An atypical autistic phenotype associated with a 2q13 microdeletion: a case report
Abstract Background Autism spectrum disorders are serious neurodevelopmental disorders that affect approximately 1% of the population. These disorders are substantially influenced by genetics. Several recent linkage analyses have examined copy number variations associated with autism risk. Microdeletion of the 2q13 region is considered a pathogenic copy number variation. This microdeletion is involved in developmental delays, congenital heart defects, dysmorphism, and various psychiatric disorders, including autism spectrum disorders. There are only 34 reported cases with this chromosomal deletion, and five cases of autism spectrum disorders have been identified among them. The autistic phenotype associated with this microdeletion has never been described. Case presentation We describe the case of a 44-month-old Caucasian girl with the 2q13 microdeletion and autism spectrum disorders with global development delay but no associated organ anomalies. We examined the autistic phenotype using different workups and observed an atypical phenotype defined by relatively preserved relational competency and imitation abilities. Conclusions The main contribution of this case report is the precise description of the autistic phenotype in the case of this deletion. We observed some atypical clinical features that could be markers of this genetic anomaly. We have discussed the pathophysiology of autism associated with this microdeletion and its incomplete penetrance and variable expressivity
A new tool CovReport generates easy-to-understand sequencing coverage summary for diagnostic reports
International audienceIn order to properly interpret the results of a diagnostic gene panel sequencing test, gene coverage needs to be taken into consideration. If coverage is too low, an additional re-sequencing test is needed to make sure that a pathogenic variant is not missed. To facilitate the interpretation of coverage data, we designed CovReport, a novel easy-to-use visualization tool. CovReport generates a concise coverage summary that allows one-glance assessment of the sequencing test performance. Both gene-level and exon-level coverage can be immediately appreciated and taken into consideration for further medical decisions. CovReport does not require complex installation and can thus be easily implemented in any diagnostic laboratory setting. A user-friendly interface generates a graphic summary of coverage that can be directly included in the diagnostic report. In addition to a stand-alone version, we also provide a command line version of CovReport that can be integrated into any bioinformatics pipeline. This flexible tool is now part of routine sequencing analysis at the Department of Medical Genetics at La Timone Hospital (Marseille, France). CovReport is available at http://jdotsoft.com/CovReport.php. It is implemented in Java and supported on Windows, Mac OS X and Linux
The role of CNVs in the etiology of rare autosomal recessive disorders: the example of TRAPPC9-associated intellectual disability
IF 3.636 (2017)International audienceIntroductionA large number of genes involved in autosomal recessive forms of intellectual disability (ID) were identified over the past few years through whole-exome sequencing (WES) or whole-genome sequencing in consanguineous families. Disease-associated variants in TRAPPC9 were reported in eight multiplex consanguineous sibships from different ethnic backgrounds, and led to the delineation of the phenotype. Affected patients have microcephaly, obesity, normal motor development, severe ID, and language impairment and brain anomalies.PatientsWe report six new patients recruited through a national collaborative network.ResultsIn the two patients heterozygous for a copy-number variation (CNV), the phenotype was clinically relevant with regard to the literature, which prompted to sequence the second allele, leading to identification of disease-associated variants in both. The third patient was homozygote for an intragenic TRAPPC9 CNV. The phenotype of the patients reported was concordant with the literature. Recent reports emphasized the role of CNVs in the etiology of rare recessive disorders.ConclusionThis study demonstrates that CNVs significantly contribute to the mutational spectrum of TRAPPC9 gene, and also confirms the interest of combining WES with CNV analysis to provide a molecular diagnosis to patients with rare Mendelian disorders
Novel CAPN3 variant associated with an autosomal dominant calpainopathy
International audienceAimsThe most common autosomal recessive limb girdle muscular dystrophy is associated with the CAPN3 gene. The exclusively recessive inheritance of this disorder has been recently challenged by the description of the recurrent variants, c.643_663del21 [p.(Ser215_Gly221del)] and c.598_612del15 [p.(Phe200_Leu204del)], associated with autosomal dominant inheritance. Our objective was to confirm the existence of autosomal dominant calpainopathies.MethodsThrough our activity as one of the reference centres for genetic diagnosis of calpainopathies in France and the resulting collaborations through the French National Network for Rare Neuromuscular Diseases (FILNEMUS), we identified four families harbouring the same CAPN3 heterozygous variant with supposedly autosomal dominant inheritance.ResultsWe identified a novel dominantly inherited CAPN3 variant, c.1333G>A [p.(Gly445Arg)] in 14 affected patients from four unrelated families. The complementary phenotypic, functional and genetic findings correlate with an autosomal dominant inheritance in these families, emphasizing the existence of this novel transmission mode for calpainopathies. The mild phenotype associated with these autosomal dominant cases widens the phenotypic spectrum of calpainopathies and should therefore be considered in clinical practice.ConclusionsWe confirm the existence of autosomal dominant calpainopathies as an entity beyond the cases related to the in‐frame deletions c.643_663del21 and c.598_612del15, with the identification of a novel dominantly inherited and well‐documented CAPN3 missense variant, c.1333G>A [p.(Gly445Arg)]. In addition to the consequences for genetic counselling, the confirmation of an autosomal dominant transmission mode for calpainopathies underlines the importance of re‐assessing other myopathies for which the inheritance is considered as strictly autosomal recessive
Identification of novel pathogenic copy number variations in Charcot-Marie-Tooth disease
International audienc
Germline AGO2 mutations impair RNA interference and human neurological development
ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development. AGO2 binds to miRNAs to repress expression of cognate target mRNAs. Here the authors report that heterozygous AGO2 mutations result in defects in neurological development and impair RNA interference
Complex Compound Inheritance of Lethal Lung Developmental Disorders Due to Disruption of the TBX-FGF Pathway
International audiencePrimary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping similar to 2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung