4,685 research outputs found

    Measurements of Local Heat Transfer and Pressure on Six 2-Inch-Diameter Blunt Bodies at a Mach Number of 4.95 and at Reynolds Numbers Per Foot up to 81 x 10(exp 6)

    Get PDF
    Measurements of the local heat transfer and pressure distribution have been made on six 2-inch-diameter, blunt, axially symmetric bodies in the Langley gas dynamics laboratory at a Mach number of 4.95 and at Reynolds numbers per foot up to 81 x 10(exp 6). During the investigation laminar flow was observed over a hemispherical-nosed body having a surface finish from 10 to 20 microinches at the highest test Reynolds number per foot (for this configuration) of 77.4 x 10(exp 6). Though it was repeatedly possible to measure completely laminar flow at this Reynolds number for the hemisphere, it was not possible to observe completely laminar flow on the flat-nosed body for similar conditions. The significance of this phenomenon is obscured by the observation that the effects of particle impacts on the surface in causing roughness were more pronounced on the flat-nosed body. For engineering purposes, a method developed by M. Richard Dennison while employed by Lockheed Aircraft Corporation appears to be a reasonable procedure for estimating turbulent heat transfer provided transition occurs at a forward location on the body. For rearward-transition locations, the method is much poorer for the hemispherical nose than for the flat nose. The pressures measured on the hemisphere agreed very well with those of the modified Newtonian theory, whereas the pressures on all other bodies, except on the flat-nosed body, were bracketed by modified Newtonian theory both with and without centrifugal forces. For the hemisphere, the stagnation-point velocity gradient agreed very well with Newtonian theory. The stagnation-point velocity gradient for the flat- nosed model was 0.31 of the value for the hemispherical-nosed model. If a Newtonian type of flow is assumed, the ratio 0.31 will be independent of Much number and real-gas effects

    Surprise! Out-of-network billing for emergency care in the United States

    Get PDF
    Using insurance claims data capturing 8.9 million emergency episodes, we show that in 22% of cases, patients attended in-network hospitals, but were treated by out-of-network physicians. We find that out-of-network billing is concentrated in a small group of primarily for-profit hospitals. Within 50% of hospitals in our sample, fewer than 5% of patients saw out-of-network physicians. In contrast, at 15% of hospitals, more than 80% of patients saw out-of-network physicians. Out-of-network billing allows physicians to substantially increase their payment rates relative to what they would be paid for treating in-network patients and significantly improve their outside option when bargaining over in-network payments. Because patients cannot avoid out-of-network physicians during an emergency, physicians have an incentive to remain out-of-network and receive higher payment rates. Hospitals incur costs when out-of-network billing occurs within their facilities. We illustrate in a model and confirm empirically via analysis of two leading physician-outsourcing firms that physicians offer transfers to hospitals to offset the hospitals’ costs of allowing out-of-network billing to occur within their facilities. We find that a New York State law that introduced binding arbitration between physicians and insurers to settle surprise bills reduced out-of-network billing rates

    The Influence of Low Wall Temperature on Boundary-Layer Transition and Local Heat Transfer on 2-Inch-Diameter Hemispheres at a Mach Number of 4.95 and a Reynolds Number per Foot of 73.2 x 10(exp 6)

    Get PDF
    Measurements of the location of boundary-layer transition and the local heat transfer have been made on 2-inch-diameter hemispheres in the Langley gas dynamics laboratory at a Mach number of 4.95, a Reynolds number per foot of 73.2 x 10(exp 6), and a stagnation temperature of approximately 400 F. The transient-heating thin-skin calorimeter technique was used, and the initial values of the wall-to-stream stagnation- temperature ratios were 0.16 (cold-model tests) and 0.65 (hot-model test). During two of the four cold tests, the boundary-layer flow changed from turbulent to laminar over large regions of the hemisphere as the model heated. On the basis of a detailed consideration of the magnitude of roughness possibly present during these two cold tests, it appears that this destabilizing effect of low wall temperatures (cooling) was not caused by roughness as a dominant influence. This idea of a decrease in boundary-layer stability with cooling has been previously suggested. (See, for example, NASA Memorandum 10-8-58E.) For the laminar data obtained during the early part of the hot test, the correlation of the local-heating data with laminar theory was excellent
    • …
    corecore