2,373 research outputs found
Seasonal Training-Load Quantification in Elite English Premier League Soccer Players
Purpose: To quantify the seasonal training load completed by professional soccer players of the English Premier League. Methods: Thirty players were sampled (using GPS, heart rate, and rating of perceived exertion [RPE]) during the daily training sessions of the 2011â12 preseason and in-season period. Preseason data were analyzed across 6 Ă 1-wk microcycles. In-season data were analyzed across 6 Ă 6-wk mesocycle blocks and 3 Ă 1-wk microcycles at start, midpoint, and end-time points. Data were also analyzed with respect to number of days before a match. Results: Typical daily training load (ie, total distance, high-speed distance, percent maximal heart rate [%HRmax], RPE load) did not differ during each week of the preseason phase. However, daily total distance covered was 1304 (95% CI 434â2174) m greater in the 1st mesocycle than in the 6th. %HRmax values were also greater (3.3%, 1.3â5.4%) in the 3rd mesocycle than in the first. Furthermore, training load was lower on the day before match (MD-1) than 2 (MD-2) to 5 (MD-5) d before a match, although no difference was apparent between these latter time points. Conclusions: The authors provide the 1st report of seasonal training load in elite soccer players and observed that periodization of training load was typically confined to MD-1 (regardless of mesocycle), whereas no differences were apparent during MD-2 to MD-5. Future studies should evaluate whether this loading and periodization are facilitative of optimal training adaptations and match-day performance
COUNTERMOVEMENT JUMP PERFORMANCE IS NOT AFFECTED DURING AN IN-SEASON TRAINING MICROCYCLE IN ELITE YOUTH SOCCER PLAYERS
This study examined the change in countermovement jump (CMJ) performance across a microcycle of training in professional soccer players during the in-season period. Nine elite youth soccer players performed a CMJ test pre and post four consecutive soccer training sessions of an in-season weekly microcycle. Training load was quantified using global positioning systems (GPS), heart rate (HR) and rating of perceived exertion (RPE). Absolute change (pre to post training) in CMJ height across each training session was analysed using one-way repeated measures analysis of variance (ANOVA). Magnitude of effects was reported with the effect size (ES) statistic. Correlation analyses assessed the relationships between training load measures and the absolute change in CMJ height. Training load remained similar on all training days apart from a significant decrease in training load (all variables except high speed distance) on the last training session (P 0.05). This study revealed no significant change in CMJ performance across the in-season microcycle. This suggests that soccer players are able to maintain CMJ performance across an in-season training microcycle
Inter-rater reliability of the Dysexecutive Questionnaire (DEX): comparative data from non-clinician respondents â all raters are not equal
Primary objective: The Dysexecutive Questionnaire (DEX) is used to obtain information about executive and emotional problems after neuropathology. The DEX is self-completed by the patient (DEX-S) and an independent rater such as a family member (DEX-I). This study examined the level of inter-rater agreement between either two or three non-clinician raters on the DEX-I in order to establish the reliability of DEX-I ratings.
Methods and procedures: Family members and/or carers of 60 people with mixed neuropathology completed the DEX-I. For each patient, DEX-I ratings were obtained from either two or three raters who knew the person well prior to brain injury.
Main outcomes and results: We obtained two independent-ratings for 60 patients and three independent-ratings for 36 patients. Intra-class correlations revealed that there was only a modest level of agreement for items, subscale and total DEX scores between raters for their particular family member. Several individual DEX items had low reliability and ratings for the emotion sub-scale had the lowest level of agreement.
Conclusions: Independent DEX ratings completed by two or more non-clinician raters show only moderate correlation. Suggestions are made for improving the reliability of DEX-I ratings.</p
Muscle Glycogen Utilisation during an Australian Rules Football Game.
PURPOSE: To better understand the carbohydrate (CHO) requirement of Australian Football (AF) match play by quantifying muscle glycogen utilisation during an in-season AF match. METHODS: After a 24 h CHO loading protocol of 8 g/kg and 2 g/kg in the pre-match meal, two elite male forward players had biopsies sampled from m. vastus lateralis before and after participation in a South Australian Football League game. Player A (87.2kg) consumed water only during match play whereas player B (87.6kg) consumed 88 g CHO via CHO gels. External load was quantified using global positioning system technology. RESULTS: Player A completed more minutes on the ground (115 vs. 98 min) and covered greater total distance (12.2 vs. 11.2 km) than Player B, though with similar high-speed running (837 vs. 1070 m) and sprinting (135 vs. 138 m), respectively. Muscle glycogen decreased by 66% in Player A (Pre-: 656, Post-: 223 mmolâkg-1 dw) and 24% in Player B (Pre-: 544, Post-: 416 mmolâkg-1 dw), respectively. CONCLUSION: Pre-match CHO loading elevated muscle glycogen concentrations (i.e. >500 mmol.kg-1 dw), the magnitude of which appears sufficient to meet the metabolic demands of elite AF match play. The glycogen cost of AF match play may be greater than soccer and rugby and CHO feeding may also spare muscle glycogen use. Further studies using larger sample sizes are now required to quantify the inter-individual variability of glycogen cost of match play (including muscle and fibre-type specific responses) as well examine potential metabolic and ergogenic effects of CHO feeding
Functional basis of electron transport within photosynthetic complex I
Photosynthesis and respiration rely upon a proton gradient to produce ATP. In photosynthesis, the Respiratory Complex I homologue, Photosynthetic Complex I (PS-CI) is proposed to couple ferredoxin oxidation and plastoquinone reduction to proton pumping across
thylakoid membranes. However, little is known about the PS-CI molecular mechanism and
attempts to understand its function have previously been frustrated by its large size and high
lability. Here, we overcome these challenges by pushing the limits in sample size and
spectroscopic sensitivity, to determine arguably the most important property of any electron
transport enzyme â the reduction potentials of its cofactors, in this case the iron-sulphur
clusters of PS-CI (N0, N1 and N2), and unambiguously assign them to the structure using
double electron-electron resonance. We have thus determined the bioenergetics of the
electron transfer relay and provide insight into the mechanism of PS-CI, laying the foundations for understanding of how this important bioenergetic complex functions
Strain in heterogeneous quantum devices with atomic layer deposition
Abstract
We investigated the use of dielectric layers produced by atomic layer deposition (ALD) as an approach to strain mitigation in composite silicon/superconductor devices operating at cryogenic temperatures. We show that the addition of an ALD layer acts to reduce the strain of spins closest to silicon/superconductor interface where strain is highest. We show that appropriately biasing our devices at the hyperfine clock transition of bismuth donors in silicon, we can remove strain broadening and that the addition of ALD layers left T
2 (or temporal inhomogeneities) unchanged in these natural silicon devices.</jats:p
Transit Photometry as an Exoplanet Discovery Method
Photometry with the transit method has arguably been the most successful
exoplanet discovery method to date. A short overview about the rise of that
method to its present status is given. The method's strength is the rich set of
parameters that can be obtained from transiting planets, in particular in
combination with radial velocity observations; the basic principles of these
parameters are given. The method has however also drawbacks, which are the low
probability that transits appear in randomly oriented planet systems, and the
presence of astrophysical phenomena that may mimic transits and give rise to
false detection positives. In the second part we outline the main factors that
determine the design of transit surveys, such as the size of the survey sample,
the temporal coverage, the detection precision, the sample brightness and the
methods to extract transit events from observed light curves. Lastly, an
overview over past, current and future transit surveys is given. For these
surveys we indicate their basic instrument configuration and their planet
catch, including the ranges of planet sizes and stellar magnitudes that were
encountered. Current and future transit detection experiments concentrate
primarily on bright or special targets, and we expect that the transit method
remains a principal driver of exoplanet science, through new discoveries to be
made and through the development of new generations of instruments.Comment: Review chapte
A quantum spin transducer based on nano electro-mechancial resonator arrays
Implementation of quantum information processing faces the contradicting
requirements of combining excellent isolation to avoid decoherence with the
ability to control coherent interactions in a many-body quantum system. For
example, spin degrees of freedom of electrons and nuclei provide a good quantum
memory due to their weak magnetic interactions with the environment. However,
for the same reason it is difficult to achieve controlled entanglement of spins
over distances larger than tens of nanometers. Here we propose a universal
realization of a quantum data bus for electronic spin qubits where spins are
coupled to the motion of magnetized mechanical resonators via magnetic field
gradients. Provided that the mechanical system is charged, the magnetic moments
associated with spin qubits can be effectively amplified to enable a coherent
spin-spin coupling over long distances via Coulomb forces. Our approach is
applicable to a wide class of electronic spin qubits which can be localized
near the magnetized tips and can be used for the implementation of hybrid
quantum computing architectures
Controlling spin relaxation with a cavity
Spontaneous emission of radiation is one of the fundamental mechanisms by
which an excited quantum system returns to equilibrium. For spins, however,
spontaneous emission is generally negligible compared to other non-radiative
relaxation processes because of the weak coupling between the magnetic dipole
and the electromagnetic field. In 1946, Purcell realized that the spontaneous
emission rate can be strongly enhanced by placing the quantum system in a
resonant cavity -an effect which has since been used extensively to control the
lifetime of atoms and semiconducting heterostructures coupled to microwave or
optical cavities, underpinning single-photon sources. Here we report the first
application of these ideas to spins in solids. By coupling donor spins in
silicon to a superconducting microwave cavity of high quality factor and small
mode volume, we reach for the first time the regime where spontaneous emission
constitutes the dominant spin relaxation mechanism. The relaxation rate is
increased by three orders of magnitude when the spins are tuned to the cavity
resonance, showing that energy relaxation can be engineered and controlled
on-demand. Our results provide a novel and general way to initialise spin
systems into their ground state, with applications in magnetic resonance and
quantum information processing. They also demonstrate that, contrary to popular
belief, the coupling between the magnetic dipole of a spin and the
electromagnetic field can be enhanced up to the point where quantum
fluctuations have a dramatic effect on the spin dynamics; as such our work
represents an important step towards the coherent magnetic coupling of
individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl
Locomotor adaptability in persons with unilateral transtibial amputation
Background
Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective
Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods
The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results
Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions
Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb
- âŠ