16 research outputs found

    Creation and control of entanglement in condensed matter spin systems

    No full text
    The highly parallel nature of the fundamental principles of quantum mechanics means that certain key resource-intensive tasks --- including searching, code decryption and medical, chemical and material simulations --- can be computed polynomially or even exponentially faster with a quantum computer. In spite of its remarkably fast development, the field of quantum computing is still young, and a large-scale prototype using any one of the candidate quantum bits (or 'qubits') under investigation has yet to be developed. Spin-based qubits in condensed matter systems are excellent candidates. Spins controlled using magnetic resonance have provided the first, most advanced, and highest fidelity experimental demonstrations of quantum algorithms to date. Despite having highly promising control characteristics, most physical ensembles investigated using magnetic resonance are unable to produce entanglement, a critical missing ingredient for a pure-state quantum computer. Quantum objects are said to be entangled if they cannot be described individually: they remain fundamentally linked regardless of their physical separation. Such highly non-classical states can be exploited for a host of quantum technologies including teleportation, metrology, and quantum computation. Here I describe how to experimentally create, control and characterise entangled quantum ensembles using magnetic resonance. I first explore the relationship between entanglement and quantum metrology and demonstrate a sensitivity enhancement over classical resources using molecular sensors controlled with liquid-state nuclear magnetic resonance. I then examine the computational potential of irreversible relaxation processes in combination with traditional reversible magnetic resonance control techniques. I show how irreversible processes can polarise both nuclear and electronic spins, which improves the quality of qubit initialisation. I discuss the process of quantum state tomography, where an arbitrary quantum state can be accurately measured and characterised, including components which go undetected using traditional magnetic resonance techniques. Lastly, I combine the above findings to initialise, create and characterise entanglement between an ensemble of electron and nuclear spin defects in silicon. I further this by generating pseudo-entanglement between an ensemble of nuclear spins mediated by a transient electron spin in a molecular system. These findings help pave the way towards a particular architecture for a scalable, spin-based quantum computer.This thesis is not currently available in ORA

    Electron spin resonance spectroscopy with femtoliter detection volume

    No full text
    International audienceWe report electron spin resonance measurements of donors in silicon at millikelvin temperatures using a superconducting LC planar micro-resonator and a Josephson parametric amplifier. The resonator includes a nanowire inductor, defining a femtoliter detection volume. Due to strain in the substrate, the donor resonance lines are heavily broadened. Single-spin to photon coupling strengths up to ∼3 kHz are observed. The single shot sensitivity is 120 ± 24 spins/Hahn echo, corresponding to ≈ 12±3 spins /√Hz for repeated acquisition

    Synthesis and investigation of donor-porphyrin-acceptor triads with long-lived photo-induced charge-separate states

    No full text
    The authors thank the EPSRC for funding (grants EP/I035536/1 and EP/J015067/1). B. W. L. and R. G. B. acknowledge the DARPA QuBE program for financial support.Two donor-porphyrin-acceptor triads have been synthesized using a versatile Suzuki-coupling route. This synthetic strategy allows the powerful donor tetraalkylphenylenediamine (TAPD) to be introduced into tetraarylporphyrin-based triads without protection. The thermodynamics and kinetics of electron transfer in the new triads are compared with a previously reported octaalkyldiphenyl-porphyrin triad exhibiting a long-lived spin-polarized charge separate state (CSS), from theoretical and experimental perspectives, in both fluid solution and in a frozen solvent glass. We show that the less favorable oxidation potential of the tetraaryl-porphyrin core can be offset by using C, as a better electron-acceptor than triptycenenaphthoquinone (TNQ). The C-porphyrin-TAPD triad gives a spin-polarized charge-separated state that can be observed by EPR-spectroscopy, with a mean lifetime of 16 ms at 10 K, which is longer than in the previously reported TNQ-porphyrin-TAPD triad, following the predicted trend from calculated charge-recombination rates.Publisher PDFPeer reviewe

    Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms

    No full text
    International audienceWe report long coherence times (up to 300 ms) for near-surface bismuth donor electron spins in silicon coupled to a superconducting microresonator, biased at a clock transition. This enables us to demonstrate the partial absorption of a train of weak microwave fields in the spin ensemble, their storage for 100 ms, and their retrieval, using a Hahn-echo-like protocol. Phase coherence and quantum statistics are preserved in the storage

    Pulsed electron spin resonance spectroscopy in the Purcell regime

    Get PDF
    International audienceIn EPR, spin relaxation is typically governed by interactions with the lattice or other spins. However, it has recently been shown that given a sufficiently strong spin-resonator coupling and high resonator quality factor, the spontaneous emission of microwave photons from the spins into the resonator can become the main relaxation mechanism, as predicted by Purcell. With increasing attention on the use of microresonators for EPR to achieve high spin-number sensitivity it is important to understand how this novel regime influences measured EPR signals, for example the amplitude and temporal shape of the spin-echo. We study this regime theoretically and experimentally, using donor spins in silicon, under different conditions of spin-linewidth and coupling homogeneity. When the spin-resonator coupling is distributed inhomogeneously, we find that the effective spin-echo relaxation time measured in a saturation recovery sequence strongly depends on the parameters for the detection echo. When the spin linewidth is larger than the resonator bandwidth, the different Fourier components of the spin echo relax with different characteristic times – due to the role of the resonator in driving relaxation – which results in the temporal shape of the echo becoming dependent on the repetition time of the experiment

    Radiative cooling of a spin ensemble

    Get PDF
    International audiencePhysical systems reach thermal equilibrium through energy exchange with their environment, and for spins in solids the relevant environment is almost always their host lattice. However, recent studies1 motivated by observations by Purcell2 have shown how radiative emission into a microwave cavity can become the dominant relaxation path for spins if the spin–cavity coupling is sufficiently large (such as for small-mode-volume cavities). In this regime, the cavity electromagnetic field overrides the lattice as the dominant environment, inviting the prospect of controlling the spin temperature independently from that of the lattice, by engineering a suitable cavity field. Here, we report on precisely such control over spin temperature, illustrating a novel and universal method to increase the electron spin polarization above its thermal equilibrium value (termed hyperpolarization). By switching the cavity input between resistive loads at different temperatures we can control the electron spin polarization, cooling it below the lattice temperature. Our demonstration uses donor spins in silicon coupled to a superconducting microresonator and we observe more than a twofold increase in spin polarization. This approach provides a general route to signal enhancement in electron spin resonance, or nuclear magnetic resonance through dynamical nuclear spin polarization3,4

    Strain-Induced Spin-Resonance Shifts in Silicon Devices

    Get PDF
    International audienceIn spin-based quantum information processing devices, the presence of control and detection circuitry can change the local environment of a spin by introducing strain and electric fields, altering its resonant frequencies. These resonance shifts can be large compared to intrinsic spin line-widths and it is therefore important to study, understand and model such effects in order to better predict device performance. Here we investigate a sample of bismuth donor spins implanted in a silicon chip, on top of which a superconducting aluminium micro-resonator has been fabricated. The on-chip resonator provides two functions: first, it produces local strain in the silicon due to the larger thermal contraction of the aluminium, and second, it enables sensitive electron spin resonance spectroscopy of donors close to the surface that experience this strain. Through finite-element strain simulations we are able to reconstruct key features of our experiments, including the electron spin resonance spectra. Our results are consistent with a recently discovered mechanism for producing shifts of the hyperfine interaction for donors in silicon, which is linear with the hydrostatic component of an applied strain

    Dal ketos al senmurv? Mutazioni iconografiche e transizioni simboliche del ketos dall'antichità al Medioevo (secolo XIII)

    Get PDF
    Using literary and iconographic sources the paper discusses the image of ketos from Antiquity to Middle Ages. The ketos, according with Greek literature, was used in the myths of both Perseus and Andromeda and Heracles and Hesione. The archaic images of the sea-monster are identifiable on Corinthian vases, on which we have only heads of leonine form. From 5th century the classical type of ketos is distinguished from all other Greek sea-monsters by a long neck, fins (also like wings), long muzzle and corrugated upper surface (like a crocodile), and leonine forelegs. Separated from histories of Andromeda and Hesione, the ketos is represented as a mount of marine gods and, especially, Nereides. The transition from Late Antiquity to Early Christian art is well represented by Aratea and by the Book of Jonah, on which the ketos was reproduced using the classic type. It served for representing Jonah’s big fish on sarcophagi and catacombs paintings, according to Midrash commentary who distinguished ketos from Leviathan. During the Middle Ages (from 11th-12th century) the image of ketos changed gradually in two directions: from classical type into a kind of a panther/dog, sometime winged, with a sea-serpent tale (Campanian ambos); or into a simple big fish as reproduced on manuscripts and italian sculptures. The article also discusses the influence of Sassanid Senmurv, concluding that the ketos was essentially an elaboration of models from Antiquity

    Probing the C60 triplet state coupling to nuclear spins inside and out

    Get PDF
    The photoexcitation of functionalized fullerenes to their paramagnetic triplet electronic state can be studied by pulsed electron paramagnetic resonance (EPR) spectroscopy, whereas the interactions of this state with the surrounding nuclear spins can be observed by a related technique: electron nuclear double resonance (ENDOR). In this study, we present EPR and ENDOR studies on a functionalized exohedral fullerene system, dimethyl[9-hydro (C60-Ih)[5,6]fulleren-1(9H)-yl]phosphonate (DMHFP), where the triplet electron spin has been used to hyperpolarize, couple and measure two nuclear spins. We go on to discuss the extension of these methods to study a new class of endohedral fullerenes filled with small molecules, such as H2@C60, and we relate the results to density functional calculation

    Fast high-fidelity single-shot readout of spins in silicon using a single-electron box

    Get PDF
    Three key metrics for readout systems in quantum processors are measurement speed, fidelity and footprint. Fast high-fidelity readout enables mid-circuit measurements, a necessary feature for many dynamic algorithms and quantum error correction, while a small footprint facilitates the design of scalable, highly-connected architectures with the associated increase in computing performance. Here, we present two complementary demonstrations of fast high-fidelity single-shot readout of spins in silicon quantum dots using a compact, dispersive charge sensor: a radio-frequency single-electron box. The sensor, despite requiring fewer electrodes than conventional detectors, performs at the state-of-the-art achieving spin read-out fidelity of 99.2% in less than 6 μ\mus. We demonstrate that low-loss high-impedance resonators, highly coupled to the sensing dot, in conjunction with Josephson parametric amplification are instrumental in achieving optimal performance. We quantify the benefit of Pauli spin blockade over spin-dependent tunneling to a reservoir, as the spin-to-charge conversion mechanism in these readout schemes. Our results place dispersive charge sensing at the forefront of readout methodologies for scalable semiconductor spin-based quantum processors
    corecore