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In spin-based quantum-information-processing devices, the presence of control and detection circuitry
can change the local environment of a spin by introducing strain and electric fields, altering its resonant
frequencies. These resonance shifts can be large compared to intrinsic spin linewidths, and it is therefore
important to study, understand, and model such effects in order to better predict device performance. We
investigate a sample of bismuth donor spins implanted in a silicon chip, on top of which a superconducting
aluminum microresonator is fabricated. The on-chip resonator provides two functions: it produces local
strain in the silicon due to the larger thermal contraction of the aluminum, and it enables sensitive electron
spin-resonance spectroscopy of donors close to the surface that experience this strain. Through finite-
element strain simulations, we are able to reconstruct key features of our experiments, including the
electron spin-resonance spectra. Our results are consistent with a recently observed mechanism for
producing shifts of the hyperfine interaction for donors in silicon, which is linear with the hydrostatic
component of an applied strain.
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I. INTRODUCTION

The spins of dopant atoms in silicon devices have been
shown to exhibit great promise for quantum-information
processing (QIP) [1–6]. The interest in this system has, in
part, been motivated by the extraordinarily long spin-
coherence times demonstrated, surpassing 1 s for the
electron spin [7] and 3 h for the nuclear spin [8] of the
phosphorus (31P) donor. Another group-V donor with
considerable promise for QIP in silicon is bismuth
(209Bi). Its large nuclear spin I ¼ 9=2 and hyperfine
constant A ¼ 1475 MHz (which describes the interaction
between the electron S and nuclear I spins AS · I) provide
rich features such as decoherence-suppressing atomic-
clock transitions [9–11], where coherence times can exceed
by 2 orders of magnitude those typically achieved using

other donor species. The Si∶Bi system also possesses a
large zero-field splitting of 7.375 GHz, making it an
attractive dopant for use in hybrid superconducting devices
[12,13] such as quantum memories [14–17].
In donor-based QIP devices, such as quantum bits and

hybrid quantum memories, the donors are located within
close proximity of control and detection circuitry on the
surface of the silicon chip. Recent experiments on indi-
vidual donor electron and nuclear spin qubits adjacent to
nanoelectronic circuits [18] have highlighted the impor-
tance of considering the effect of these structures on the
local environment of the spin. For example, it was shown
that the spin-resonance frequencies of 31P donors in nano-
electronic devices can experience shifts from their bulklike
values up to 4 orders of magnitude greater than their
intrinsic linewidths [5,19–21]. These shifts have been
attributed to strain and electric fields produced by surface
metallic gates in the devices.
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Strain is an inherent feature of MOS electronic devices,
which often combine materials that have vastly different
coefficients of thermal expansion (CTEs) [22,23]. It is,
therefore, crucial to understand and predict the effect of
intrinsic device strains on donors, as doing so can aid the
design of scalable donor-based QIP and hybrid supercon-
ducting device architectures, serving as a guide to the often
expensive and time-consuming fabrication process. Here, we
study a sample of bismuth (209Bi) donors implanted from 50
to 150 nm beneath a thin-film aluminum wire [Figs. 1(a)
and 1(b)]. We observe the Si∶Bi spin-resonance spectra in
the device to be substantially altered from what is typically
found in bulk experiments [10,24]. Through analyzing a
range of mechanisms, we conclude that strain induced by
differential thermal contraction of the silicon and the surface
aluminum structure is the most likely explanation for the
nontrivial spectra. A model is developed that is able to
reproduce many facets of our measurements, demonstrating
the ability to predict device behavior and illustrating the
importance of considering strain in semiconductor micro-
and nanoelectronic quantum devices.

The article is organized as follows: In Sec. II, we present
the device architecture, physical system, and experimental
setup utilized in our paper. Section III examines the
electron spin-resonance spectra of bismuth donors beneath
an aluminum wire, revealing nonbulklike splittings of the
resonance peaks. Potential mechanisms behind the split-
tings are discussed in Sec. IV, and simulations of the spin-
resonance spectra are performed in Sec. V for one of the
mechanisms identified. We conclude by discussing the
implications of the simulations and the broader significance
of our results for QIP in Sec. VI.

II. EXPERIMENTAL DETAILS

A. Device

Our device [Fig. 1(a)] consists of three superconducting
aluminum microwave resonators patterned on the surface
of the same silicon chip via electron-beam lithography. The
top 700 nm of silicon is an epitaxial layer of isotopically
enriched 99.95% 28Si, grown on an approximately 350-μm-
thick high-resistivity float-zone silicon (100) wafer. The
epitaxial layer is implanted with 209Bi donors according to
the profile depicted in Fig. 1(b).
The resonators are a lumped-element LC design. They

contain a central inductive wire that produces an oscillating
microwave magnetic field B1 to drive and detect the spin
resonance. The drive field B1 is proportional to the magnetic
vacuum fluctuations δB1 in the resonator, a quantity that we
can simulate directly for our device. We utilize δB1 in the
following calculations and discussion: it is readily deter-
mined from our simulations (unlike B1, which requires an
accurate calibration of losses and other experimental param-
eters), and it provides us with another important measure, the
spin-resonator coupling strength g. A simulation of δB1 is
performed knowing only the impedance of the resonator Z0

and its frequency ω0=2π, and by calculating the resulting
vacuum current fluctuations δi ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2Z0Þ

p
in the wire

(where ℏ is the reduced Planck’s constant). The current-
density distribution in the superconducting film [depicted in
Fig. 2(a)] is evaluated using dc equations adapted from
Ref. [25], which are valid for the calculation of our micro-
wave current due to the negligible Ohmic losses at milli-
kelvin temperatures and because the typical resonator
frequency (about 7 GHz) is significantly smaller than the
superconducting gap of aluminum [2Δð0Þ ≈ 140 GHz] [26].
The current-density distribution is then fed to a finite-
element magnetostatic solver (COMSOL Multiphysics), with
the resulting jδB1j profile shown in Fig. 2(b).
We observe a strong spatial dependence of the δB1

orientation at the donor implantation depth [Fig. 2(c)].
Underneath the wire, the Y component of the field
δB1Y dominates, while, to the side, δB1Z is the largest.
We utilize this trait later in order to study spins in different
spatial regions through orientation-dependent electron
spin-resonance (ESR) spectroscopy [12,27].
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FIG. 1. (a) Sketch of an LC superconducting resonator made
from a 50-nm-thick film of aluminum, patterned on a silicon
substrate, with central inductor 5 μm wide and 700 μm long.
While we show only one resonator here, there are three (almost
identical) resonators patterned on the same chip [see (c)]. The
silicon sample is cleaved along the h110i crystal axes, and we
specify a sample frame such that Xk½110�, Yk½1̄10�, and Zk½001�.
The static field B0 is oriented in the X-Y plane at a variable angle ϕ
to X. (b) Bismuth donor doping profile. The blue dashed curve
shows the result of a secondary-ion mass spectrometry (SIMS)
measurement, while the red curve is the concentration of neutral
donors obtained from a finite-element simulation performed using
the SIMS profile that takes into account donor ionization from the
Schottky junction between aluminum and silicon (see Sec. IVA).
(c) Three-dimensional copper microwave cavity sample holder.
The silicon chip is mounted on a sapphire holder (pictured in
white) and is probed via the cavity input and output antennas.
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B. Physical system

At cryogenic temperatures, the bismuth donors bind an
additional valence electron compared to the silicon atoms
of the host crystal, providing a coupled electron (S ¼ 1=2)
and nuclear (I ¼ 9=2) spin system that is described by the
Hamiltonian

H0=h ¼ γeB0 · S − γnB0 · Iþ AS · I; ð1Þ

where γe ¼ 28 GHz=T (γn ¼ 6.963 MHz=T) is the elec-
tron (nuclear) gyromagnetic ratio and B0 is a static
magnetic field applied in the plane of the aluminum
resonators—with a variable angle ϕ relative to the inductive
wire [see Fig. 1(a)]—that allows us to fine-tune the spin
transition frequencies of the 209Bi donors.
At values of the magnetic field where the electron

Zeeman frequency Ez=h ¼ γeB0 ≲ A, the eigenstates
become strongly mixed in the electron-nuclear spin basis
and are best described by the total spin F ¼ Iþ S and its
projection onto B0, mF [9]. We choose the frequencies of
the resonators to be close to the Si∶Bi zero-field splitting of
7.375 GHz in order to minimize field-induced losses in the
superconducting films, achieving ω0A=2π ¼ 7.305 GHz
for resonator A, ω0B=2π ¼ 7.246 GHz for resonator B
and ω0C=2π ¼ 7.144 GHz for resonator C. We therefore
operate in the regime where F and mF are good quantum
numbers and we describe states in the jF;mFi basis. In the
following analysis and discussion, we focus on resonators
A and B—those with frequencies closer to the zero-field
splitting, which we are able to study the most extensively.
Table I presents important parameters that characterize the

TABLE I. Numerical calculations of the spin transition parameters for the Si∶Bi system at the LC resonator frequencies listed.
Parameters include the resonance field (B0), the transition matrix element (M ¼ jhF;mFjSXjF0; m0

Fij, jhF;mFjSZjF0; m0
Fij for the

jΔFΔmFj ¼ 1, 0 transitions; see Appendix A), and the transition frequency sensitivity to the magnetic field (df=dB0), the electron g
factor (df=dg), the hyperfine interaction (df=dA), and the quadrupole interaction (df=dQ).

Resonator A, ω0A=2π ¼ 7.305 GHz

Transition ΔFΔmF B0 (mT) M ðdf=dB0Þ=γe df=dA df=dg (MHz) df=dQ

1A∶ j4;−4i ↔ j5;−5i −1 2.86 0.47 −0.90 5.00 −36.0 2.45
2A∶ j4;−4i ↔ j5;−4i 0 3.22 0.30 −0.80 5.00 −35.9 −19.1
3A∶ j4;−4i ↔ j5;−3i 1 3.69 0.07 −0.69 5.00 −35.8 −35.9
4A∶ j4;−3i ↔ j5;−4i −1 3.69 0.42 −0.69 5.00 −35.8 6.14
5A∶ j4;−3i ↔ j5;−3i 0 4.32 0.40 −0.59 5.00 −35.7 −10.6
6A∶ j4;−3i ↔ j5;−2i 1 5.22 0.13 −0.49 5.00 −35.4 −22.6
7A∶ j4;−2i ↔ j5;−3i −1 5.22 0.37 −0.49 5.00 −35.5 7.42
8A∶ j4;−2i ↔ j5;−2i 0 6.60 0.46 −0.38 5.00 −35.0 −4.54

Resonator B, ω0B=2π ¼ 7.246 GHz

Transition ΔFΔmF B0 (mT) M ðdf=dB0Þ=γe df=dA df=dg (MHz) df=dQ

1B∶ j4;−4i ↔ j5;−5i −1 5.20 0.47 −0.90 5.00 −65.4 2.49
2B∶ j4;−4i ↔ j5;−4i 0 5.88 0.31 −0.79 5.00 −65.1 −19.0
3B∶ j4;−4i ↔ j5;−3i 1 6.74 0.07 −0.69 5.00 −64.8 −35.7
4B∶ j4;−3i ↔ j5;−4i −1 6.75 0.42 −0.69 5.00 −64.9 6.27
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FIG. 2. (a) Calculation of the current-density vacuum fluctua-
tions in the inductor. Equations describing the current-density
profile are adapted from Ref. [25]. The only inputs to this
calculation are the impedance of the resonator Z0 ¼ 44Ω and
its frequency ω0=2π ≈ 7.3 GHz, extracted using CST Microwave
Studio. (b) A COMSOL Multiphysics finite-element simulation of the
spatial dependence of the magnetic-field vacuum fluctuation δB1

magnitude produced by the current density in (a). The symbols
beneath the white dashed line identify regions that will be referred
to in the following sections. (c) Components of δB1 along the Y
and Z axes at a depth of 75 nm (corresponding to the peak donor
concentration), marked by the white dashed line in (b).
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low-field (B0 < 7 mT) spin-resonance transitions that are
probed in our experiments.

C. Sample mounting

The device is fixed to a sapphire wafer with a small
amount of vacuum grease (which serves to minimize the
sample strains produced through mounting), and the sap-
phire is then clamped between the halves of a rectangular
copper microwave cavity [Fig. 1(c)], which acts as a sample
enclosure and permits high quality factors for the super-
conducting resonators by suppressing radiation losses. The
copper cavity is attached to the cold finger of a dilution
refrigerator and cooled to a base temperature of 20 mK,
where we are able to detect the spin-echo signals produced
by the small number of shallow-implanted donors under-
neath each wire (estimated at approximately 107) by
utilizing a quantum-noise-limited ESR setup, as described
in Refs. [12,28,29]. We direct the reader to the
Supplemental Material of Ref. [12] for a full schematic
of the experimental setup.

III. SPIN-RESONANCE SPECTRA

A. Echo-detected field sweep

In this section, we provide a detailed discussion of the
Si∶Bi ESR spectra, first reported in Refs. [12,13]. We
observe the ESR spectrum for resonator B by performing
an echo-detected magnetic-field sweep on the lowest-field
spin-resonance line [indicated by the arrow in Fig. 3(a)],
corresponding to transition 1B, i.e., between the states
j4;−4i ↔ j5;−5i (see Table I). We integrate the echo
signal Ae from a Hahn echo sequence [30] [over the dashed
region depicted in the pulse protocol of Fig. 3(b)] and step
the magnetic field B0. The sweep is first performed with
B0kX (ϕ ¼ 0°), then repeated with the orthogonal orienta-
tion B0kY (ϕ ¼ 90°); the resulting traces are shown in
Fig. 3(c). The doped silicon sample investigated in this
paper has also been characterized using a standard “bulk”
ESR spectrometer at the X band and with no planar on-chip
resonator [24]. The gray solid curve in Fig. 3(c) represents
the spin-resonance spectrum from this work extrapolated to
the spin transition and frequency utilized in our experiment
(see Appendix B for further details). Instead of measuring a
single peak with a linewidth of approximately 20 μT (as
expected from the X-band measurement), we observe that
the resonance is split into two peaks. Each peak has a
linewidth of about 100 μT, representing a total broadening
of more than an order of magnitude.
Varying the amplitude of the refocusing π pulse in the

echo sequence reveals a series of Rabi oscillations (Ae is
maximized whenever the refocusing pulse equals an odd
multiple of π), and the frequency of these oscillations is
observed to depend strongly on the magnetic field B0

[Fig. 3(b)] across these two peaks. The traces in Fig. 3(c)
are recorded in a “Rabi-levelled” manner, ensuring that, at
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FIG. 3. (a) Eigenstate frequencies of the Si∶Bi system. The
purple states and arrow identify the j4;−4i ↔ j5;−5i transition
(1B) probed in (b) and (c). (b) Rabi oscillations as a function of
B0 for transition 1B. The amplitude of the refocusing pulse in a
Hahn echo sequence (shown above) is varied to reveal oscil-
lations in the integrated echo signal Ae (marked with a black
dashed box in the sequence). Symbols identify spectral regions
produced by spins at specific locations in the device [see
Fig. 2(b)]. (c) A Rabi-levelled echo-detected field sweep, taken
using the calibrated π-pulse amplitudes of (b) (the yellow
dashed line). The gray-filled curve depicts the expected ESR
spectrum, while the solid circles show the measured spectra
(averaged over eight sequences with a repetition rate of 0.2 Hz)
for different field orientations. A 2% correction is applied to B0

for the measured data (within the magnet calibration error) so
that the high-field peak aligns with the theoretical transition
field. The same correction is applied to all of the experimental
data in this work.
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each value of B0, the pulse amplitude is chosen to provide
well-calibrated π and π=2 pulses [the yellow dashed line in
Fig. 3(b)].
The nontrivial peak splitting and field dependence of

the Rabi frequency observed in Figs. 3(b) and 3(c) can be
understood by examining the experimental details, starting
with the relevant bandwidths of the echo sequence. The π=2
pulse of the Hahn echo readout provides the initial
excitation of spins that contribute to the echo signal. It
has a duration of tπ=2 ¼ 2.5 μs and an excitation bandwidth
of approximately 500 kHz. This pulse is heavily filtered by
the resonator, reducing its bandwidth to a value determined
by the resonator linewidth κ ¼ ω0=Q ≈ 2π × 25 kHz
(where Q ¼ 3.2 × 105 is the quality factor of resonator
B). Thus, only spins with resonant frequencies that lie
inside the resonator bandwidth contribute to the measure-
ment. In addition, these spins experience a relaxation rate
which is 3 orders of magnitude greater than the intrinsic
value due to the Purcell effect [13]. This enhanced
relaxation is suppressed quadratically with the spin-
resonator frequency detuning, such that off-resonant spins
display substantially longer energy relaxation times T1 and
quickly become saturated under the 0.2-Hz repetition
rate of the experiment. Each B0 in Figs. 3(b) and 3(c),
therefore, corresponds to a highly selective measurement
on a small subensemble of spins with a resolution
ΔB ¼ κ=ðdf=dB0Þ ¼ 1 μT, where df=dB0 is the transition
frequency field sensitivity (listed in Table I).
Comparing the echo-detected spectra for the different

orientations of B0 [the red and blue circles in Fig. 3(c)]
provides strong evidence that the splitting and inhomo-
geneous broadening of the ESR transition results from
the presence of the on-chip LC resonator. We find that the
low-field peak vanishes for B0kY (ϕ ¼ 90°), while the
high-field peak remains relatively unchanged. This dis-
appearance can be understood by referring to Fig. 2(c) and
noting that the spin transition probed here (1B; see Table I)
obeys the selection rule jΔmFj ¼ 1 and is therefore excited
only when δB1⊥B0. For B0kY, the condition δB1⊥B0 is
met only for spins to the side of the wire (which experience
a δB1 field along Z). Spins underneath the wire (where the
δB1 field is almost entirely along Y) are not measured in
this scan. For the spectrum recorded with B0kX (ϕ ¼ 0°),
spins underneath the wire as well as those to the side
observe B0⊥δB1 and thus contribute to the echo signal.
Thus, the low-field (vanishing) peak likely corresponds to
the spins below the wire, while the high-field peak is
produced by spins to its side, indicating that the presence of
the inductive wire is the source of the splitting. In Sec. IV,
we discuss a number of potential mechanisms (e.g., an in-
built electric field, a Meissner-induced magnetic-field
inhomogeneity, and strain) through which this splitting
could occur. The spin-resonance frequency of the donors
therefore depends on their location relative to the wire.
By measuring only a small fraction of the large

inhomogeneously broadened transition at each B0 field
(1 μT against approximately 200 μT) in Fig. 3(c), we are
effectively probing subensembles of donors residing in
specific locations in the device.
We now return to the B0 dependence of the Rabi

oscillations [Fig. 3(b)] and demonstrate that the picture
described above is in good agreement with these data. The
coupling strength between each spin and the resonator is
given by g ¼ γeMjδB1⊥j, where M is the ESR transition
matrix element (see Table I) and jδB1⊥j is the magnitude of
the δB1 component felt by the spin that is perpendicular to
B0. The Rabi frequencyΩR then has a linear dependence on
the δB1 field through the relation ΩR ¼ 2g

ffiffiffī
n

p
, where n̄ is

the mean intracavity photon number (proportional to the
input microwave power). For the high-field peak in the ESR
spectra (originating from spins located to the side of the
wire), the sharp transition at the low-field edge likely
corresponds to spins far from the wire that are bulklike in
their behavior. Being far from the wire, these spins also
experience a reduced δB1 value [see Fig. 2(c)] and thus
Rabi frequency, observed as longer-period oscillations in
Fig. 3(b). Moving closer to the wire increases the spin-
resonance shifts (i.e., through larger electric or strain
fields), as well as the magnitude of the δB1 field felt by
the spins. We thus anticipate that the tail regions of the lines
will have an enhanced Rabi frequency, and this is indeed
the case. The symbols overlaid on Fig. 3(b) summarize the
above discussion by correlating the different spectral
regions with spins from specific locations in the device
[see the corresponding symbols in Fig. 2(b)].

B. Extended spectra

To help identify the mechanism behind the wire-induced
peak splitting and broadening, we probe additional spin-
resonance transitions (listed in Table I) using resonators A
and B, which display different sensitivities to the various
Hamiltonian parameters. In Fig. 4(a), we plot the calculated
low-field ESR transition frequencies and their crossing
with resonator A. Transitions obeying the usual spin
selection rule ΔmF ¼ �1 (the solid lines) are accessed
in the experiment by ensuring that B0⊥δB1, as is the case
for the previous measurement on transition 1B. Such
transitions are typically referred to as being of the “SX”
type since it is primarily the SX operator that drives spin
flips between the states. Transitions obeying the selection
rule ΔmF ¼ 0 [the dashed lines in Fig. 4(a)]—of the so-
called SZ type—are probed in the experiment with the
alignment B0kδB1 (i.e., B0kY). We refer the reader to
Appendix A for a detailed discussion of these two types of
spin-resonance transitions.
A measurement of the first transitions with B0kX

(ΔmF ¼ �1) is shown in the Rabi-levelled echo-detected
field sweep of Fig. 4(b) (the red trace) for resonator A. Also
presented here is the spectrum recorded with B0kY (the
blue trace), which is composed of both ΔmF ¼ 0
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resonances from spins underneath the wire (where B0kδB1)
and ΔmF ¼ �1 resonances from spins to the side of the
wire (where B0⊥δB1). The ΔmF ¼ 0 transitions are
observed to lack a splitting; this is further evidence
that they originate from spins located predominantly
underneath the wire (the only region with B0kY). The

experiments are repeated for resonator B and displayed in
the lower traces of Fig. 4(c). We list the extracted peak
splittings of the recorded transitions in Table II.

IV. PEAK SPLITTING MECHANISMS

We now turn to the analysis of possible mechanisms
through which the presence of the aluminum wire may
induce a splitting and broadening of the observed ESR
spectra.

A. Built-in voltage

The aluminum-silicon interface formed beneath the
resonator constitutes a Schottky junction. Band bending
at the interface results from the difference in work functions
of the aluminum and silicon (or from Fermi-level pinning to
surface states) [31]. The band bending causes the ionization
of bismuth donors within an area known as the depletion
region. Donor ionization continues into the semiconductor
until a sufficient space charge has been accumulated to
counter the band bending. Immediately outside of the
depletion region, the total electric field is reduced to zero.
At finite temperatures, however, the edge of the depletion
region is broadened according to Fermi-Dirac statistics, and
a small fraction of neutral donors can experience large
electric fields. Such donors would display a Stark shift of
the hyperfine interaction [20] or electron g factor through

TABLE II. Experimental center fields (B0c) and peak splittings
(ΔB0) extracted from the measured ESR transitions for resonators
A and B. ΔFΔmF ¼ 0 transitions do not display a splitting and
are therefore not included. Although the ΔFΔmF ¼ �1 tran-
sitions are almost degenerate here, we attribute the peaks to the
ΔFΔmF ¼ −1 transitions, which exhibit larger transition matrix
elements M. We do not attempt to extract linewidths of the peaks
due to their highly asymmetrical shapes.

Resonator A, ω0A=2π ¼ 7.305 GHz

Transition B0c (mT) ΔB0 (mT)

1A 2.87 0.11
4A 3.71 0.15
7A 5.28 0.20

Resonator B, ω0B=2π ¼ 7.246 GHz

Transition B0c (mT) ΔB0 (mT)

1B 5.24 0.11
4B 6.84 0.14
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FIG. 4. (a) ESR transition frequencies of the Si∶Bi system for
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obey the selection rule ΔmF ¼ �1 (i.e., δB1⊥B0), while the
dashed lines show ΔmF ¼ 0 transitions (δB1kB0). The purple
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7.305 GHz). Rabi-levelled echo-detected field sweeps of the ESR
transitions below 7 mTof (b) resonator A and (c) resonator B. The
theoretical spin transition frequencies are identified by the gray
solid and dashed lines.

0 50 100 150 200 250 300
–5

–4

–3

–2

–1

0

1

Z  (nm)

E
le

ct
ric

 fi
el

d,
 E

z (
M

V
/m

)

–2

–1.5

–1

–0.5

0

0.5

1

sc
/C

B
i

Neutral Bi

Depletion 
edge

0

2

4

6

10

C
B

i (
10

16
 c

m
–3

)

8
Ionized
Bi

FIG. 5. Fraction of ionized donors, built-in electric field, and
doping profile versus the depth beneath the aluminum resonator.
The implanted Bi profile (as determined from a secondary-ion
mass spectrometry measurement) is shown in orange. The green
curve provides the space charge density ρsc (which represents the
density of ionized donors) divided by the donor concentration
CBi. Calculations are performed with the finite-element electro-
static solver ISE-TCAD, with a simulation temperature of 5 K (the
minimum temperature at which convergence is achieved) and an
assumed background boron doping density of 1013 cm−3. The
gray dashed box highlights the edge of the depletion region. This
roll-off is expected to get steeper at the experimental temperature
of 20 mK. At about a 275-nm depth, the bismuth donors are
ionized once again (this time to the background boron acceptors
present in the sample) before the space charge density becomes
negative, indicating the presence of ionized boron dopants.
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the electric field, altering their resonant frequencies from
those to the side of the wire away from the depletion region.
We perform finite-element simulations with the com-

mercial software ISE-TCAD, which solves the Poisson
equation self-consistently to extract the electric fields
and ionized bismuth concentration underneath the wire,
the results of which are shown in Fig. 5. This plot
demonstrates that the broadening of the depletion region
edge is small relative to the width of the implantation
profile, even at the elevated simulation temperature of
5 K—the minimum temperature at which convergence is
achieved. Donors at depths of less than 50 nm are mostly
ionized, while donors deeper than that are neutral and
experience negligible electric fields (<50 kV=m, with
expected Stark shifts below 1 kHz [32]). At the exper-
imental temperature of 20 mK, we expect an even sharper
depletion region boundary. We therefore discount this
mechanism as the cause for the spectral broadening and
remove the shallow donors (<50 nm) beneath the wire
from the spectra simulations in the following sections.

B. Magnetic-field inhomogeneity

It is conceivable that the superconducting resonator
could perturb the static magnetic field in a manner that
produces differing magnetic-field profiles beneath the wire
and to its side. For example, this inhomogeneity might
result from the component of a misaligned B0 field
perpendicular to the aluminum film, concentrating above
or below the wire due to the Meissner effect [33]. The
strength of any such inhomogeneity increases in proportion
to the magnitude of B0 and, as the resonators are fabricated
within 2 mm of one another on the same silicon chip, the
inhomogeneity would be nearly identical for each of the
resonators. We can rule this mechanism out due to the fact
that we observe the same splitting and linewidth of the first
spin transition for resonators A and B (see Table II) and also
C (see Appendix C), despite the transition for resonator C
occurring at almost twice the field of resonator B and 3
times that of resonator A.

C. Strain

Strain can alter the spin transition frequencies of donors
in silicon through several mechanisms. It has been shown
that the nuclear-magnetic-resonance (NMR) frequencies of
donors with nuclear spin I > 1=2 [34,35] (e.g., arsenic,
antimony, and bismuth) can be shifted through a strain-
induced quadrupole interaction (QI). Strain can also modify
the hyperfine interaction strength A [36] or the electron
g factor ge, both of which result in shifts of the spin-
resonance frequencies. Here, we analyze all three of these
mechanisms (QI, A, and ge) to determine if they are capable
of accounting for the ESR spectra presented in Sec. III.
In order to aid in our discussion, we first explain the

origin of strain in our device and provide an estimate of its
magnitude and spatial distribution through simulations.

The aluminum resonator is deposited on the silicon sub-
strate by electron-beam evaporation at room temperature,
where the device is assumed to be strain-free [37,38]. While
the evaporation temperature may be above room temper-
ature in practice, it is assumed to be only a fraction of the
total temperature range explored in our experiments
(ΔT ≈ 300 K). As the device is cooled to 20 mK, the
approximate tenfold difference in the CTEs of silicon and
aluminum produces substantial device strains through
differential thermal contraction. We perform finite-element
simulations of these strains using the software package
COMSOL Multiphysics, where we include temperature-
dependent CTEs of the materials [39–41] and the aniso-
tropic stiffness coefficients for silicon [42]. Three of the six
independent strain tensor components (those along the
h100i crystal axes) are plotted in Fig. 6 as a function of
position. The full strain tensor and its spatial dependence
can be found in Appendix D.

1. Quadrupole interaction

There have been several recent studies that report on
quadrupole interactions of group-V donors in silicon,
generated by strain [34,35] or interface defects [43].
Nuclei with a spin I > 1=2 can have a nonspherical charge
distribution and an associated quadrupole moment Q [44].
This charge distribution has an axis of symmetry that aligns
with the nuclear angular momentum and interacts with an
electric-field gradient (EFG) Vαβ (where α and β are the
principal axes in the local crystal coordinate system)
produced by external charges, such as the donor-bound
electron. The interaction is described by the following
quadrupole Hamiltonian:

HQ=h ¼ γ
eQVzz

4Ið2I − 1Þh ½3I
2
z − I2 þ ηðI2x − I2yÞ�; ð2Þ

0 2 4

Y (µm)

0.2

0.4

0.6

0.8

1

Z
 (

µ
m

)

0 2 4 0 2 4

0

exx eyy
ezz

–2

–1

0

1

2 ×10–4

FIG. 6. Finite-element COMSOL simulations of the strain tensor
components along the principle crystal axes xk½100�, yk½010�, and
zk½001� and their variation as a function of position in the device.
A cross section of the aluminum wire (drawn to scale) is
represented by the gray gradient-filled box above the silicon
substrate (which bounds the strain data). Only half of the wire is
displayed here due to it being symmetric about its center. Here,
the xyz crystal axes are related to the sample frame XYZ (used to
describe δB1 and the orientation of B0) by a 45° rotation about Z
[see Fig. 1(a)]. We show the result for the wire running parallel to
the ½110� (or X) axis, the direction in which the sample is cleaved.
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where γ is a multiplicative scaling factor (resulting from the
Sternheimer antishielding effect [44]), e is the electron
charge, h is Planck’s constant, I is the nuclear spin operator
with components Iα, I in the denominator is the scalar value
of the nuclear spin (I ¼ 9=2), and η ¼ ðVxx − VyyÞ=Vzz is
an asymmetry parameter. It is evident from Eq. (2) that
the existence of an EFG Vαβ produces a frequency shift
between states with different nuclear spin projectionsmI. In
the case of the Si∶Bi spin system, quadrupole shifts in the
ESR spectra are evident at low magnetic fields because
the electron and nuclear spin states are strongly mixed by
the hyperfine interaction.
In Table I, we list the sensitivities of the transitions to the

quadrupole coefficient Qzz ¼ γeQVzz=½4Ið2I − 1Þh� (the
prefactor in the quadrupole HamiltonianHQ). By comparing
the sensitivities df=dQ to the extended ESR spectra (Fig. 4)
and the observed peak splittings (Table II), it becomes
apparent that the quadrupole interaction is unlikely to be the
origin of the nontrivial spectra shape. The peak splittings
ΔB0 of different transitions for the same resonator approx-
imately follows their magnetic-field sensitivities df=dB0

(see Table I), implying an underlying mechanism with a
constant frequency distribution across all transitions. This is
clearly not the case for the quadrupole interaction, where
df=dQ increases with the transition number. Furthermore,
the ΔFΔmF ¼ 0 transitions have sensitivities of opposite
sign to the ΔFΔmF ¼ −1 transitions—the asymmetry of
this resonance is therefore expected to be the opposite of that
of the low-field peak in theΔFΔmF ¼ −1 transition, as they
both correspond to spins in the same region of the device
(underneath the wire). However, this opposite symmetry is
not apparent in Fig. 4.
Whereas df=dQ is strongly dependent on the transition,

we note that df=dA is constant (see Table I), so a strain-
induced inhomogeneous hyperfine interaction is likely to
have the desired properties for the comparison of different
transitions.

2. Hyperfine interaction

Silicon has a conduction-band minimum that is sixfold
degenerate along the h100i equivalent crystallographic
directions—commonly referred to as “valleys” [45]. The
degeneracy of these valleys is broken by the confining
potential of the donor, resulting in a singlet A1 ground
state and doublet E and triplet T2 excited states [46]. For a
donor in a bulk silicon crystal (in the absence of strain and
electric fields), the electron is perfectly described by the
singlet ground state jψi ¼ jA1i. The E and T2 state wave
functions have vanishing probabilities at the nucleus [i.e.,
jψð0Þj2 ¼ 0] and, consequently, do not exhibit a hyperfine
interaction (A ¼ 0). Applying strain to a valley shifts its
energy relative to the conduction-band minimum, resulting
in a rearrangement of the relative populations of each valley
which can be described as a mixing of the donor A1 and E
states. The degree of mixing can be calculated using the

“valley repopulation” model (VRM) [47], which predicts a
quadratic shift of the hyperfine interaction with an applied
strain [48]:

ΔAðϵÞ
Að0Þ ¼−

Ξ2
u

9E2
12

½ðϵxx−ϵyyÞ2þðϵxx−ϵzzÞ2þðϵyy−ϵzzÞ2�;

ð3Þ
where Ξu ≈ 8.7 eV is the uniaxial deformation potential of
silicon, E12 is the energy splitting between the A1 and E
states, and ϵ is a general strain tensor with principal
components ϵαα (where α are the cubic axes xk½100�,
yk½010�, and zk½001�). This expression is valid in the limit
of a small ϵ (jϵααj≲ 1 × 10−3) and is applicable to the range
of strain produced in our device. In Fig. 7(a), we plot the
hyperfine shiftΔAðϵÞ close to the inductive wire, calculated
using Eq. (3). The quadratic dependence of AðϵÞ on strain
implies that it is only ever reduced from Að0Þ, the
unstrained value. It is apparent that such a distribution
could not explain the spectra of Sec. III, which would
require both positive and negative frequency components in
order to split the resonance peak in the manner observed. In
addition, the VRM predicts ΔA ≈ 100 kHz for strains on
the order of 10−4, equating to a resonance shift of
ΔA × ðdf=dAÞ=ðdf=dB0Þ ¼ 20 μT, an order of magnitude
smaller than our observed peak broadening.
Very recently, it was shown experimentally that the

hyperfine interaction of donors in silicon is also sensitive
to the hydrostatic component of strain [48]. This result is
surprising, as the VRM predicts no hyperfine reduction for
strains that shift all of the valleys by the same energy.
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FIG. 7. Calculation of the hyperfine interaction reduction as a
result of the simulated device strain. (a) Calculated hyperfine shift
ΔA according to the valley repopulation model, which predicts a
quadratic dependence on strain. (b) Calculation performed using
the second-order strain model of Eq. (4). The second-order model
predicts shifts an order of magnitude larger than the VRM does
and also displays bipolar frequencies due to its strong linear
dependence.
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A second-order strain model for the hyperfine shift was
proposed:

ΔAðϵÞ
Að0Þ ¼ K

3
ðϵxx þ ϵyy þ ϵzzÞ þ

L
2
½ðϵxx − ϵyyÞ2 þ ðϵxx − ϵzzÞ2

þ ðϵyy − ϵzzÞ2� þNðϵ2xy þ ϵ2xz þ ϵ2yzÞ; ð4Þ

with K ¼ 29, L ¼ −9064, and N ¼ −225 being the
model coefficients for 209Bi calculated using tight-binding
theory and K ¼ 17.5 extracted from a first-principles
calculation using density-functional theory. Remarkably,
for jϵj≲ 1 × 10−3, the model predicts that the linear
hydrostatic strain dominates the hyperfine shift. It is
suggested that this term is due primarily to strain effects
on the central-cell potential, inducing a coupling between
the 1s A1 state and higher donor orbital states with the same
symmetry. Experiments confirm that the existence of the
linear term and the extracted coefficient K ¼ 19.1 is in
good agreement with theory. A calculation of the hyperfine
shift distribution in the device using the full second-order
strain model [Eq. (4)] is shown in Fig. 7(b). For strains on
the order of 10−4, we expect ΔA ≈ 1 MHz and an equiv-
alent resonance shift of about 200 μT. In addition, the
sensitivity of the resonance frequency to the hyperfine
interaction is constant across all spin transitions (see
Table I), in agreement with the peak splittings extracted
in Table II. This mechanism provides bipolar resonance
shifts of the correct magnitude and thus constitutes a likely
explanation for the spectra of Fig. 3(c). It should be noted
that such a mechanism is not unique to bismuth, a linear
hyperfine tuning with strain is observed for all of the
group-V donors in silicon [48].

3. g factor

The final mechanism we consider is a strain-induced
shift of the electron g factor ge. Strain modifies ge directly
(by admixing higher-lying energy bands) and through the
valley repopulation effect [47]. These two effects alter the
gyromagnetic ratio γe ¼ geμB=h (where μB is the Bohr
magneton), shifting the spin-resonance frequency through
the electron Zeeman interaction γeB0 · S. The g-factor shift
for donors in silicon has been predicted and measured to be
several orders of magnitude smaller than that of the
hyperfine interaction [47,49]. In addition, the electron
Zeeman energy for the range of fields applied in our study
(B0 < 7 mT) is small, with Ez=h ¼ γeB0 < 300 MHz, thus
providing a proportionally lower contribution to the
transition frequency than the hyperfine interaction
A ¼ 1457 MHz. We quantify the difference between these
two effects with the transition parameter data in Table I. For
the same relative change, the hyperfine interaction shifts the
resonant frequency by a factor ðA × df=dAÞ=ðge × df=dgÞ
greater than does the electron g factor, which ranges from
50 to 100 for the spin transitions explored here. Finally,
comparing the g-factor sensitivity df=dg for the transitions

of resonator A to those of resonator B, we expect the
splittings and broadenings to be approximately a factor 2
larger for resonator B, which is not observed in the
measurements. We therefore safely neglect this mechanism.

V. ESR SPECTRA SIMULATIONS

In this section, we assess whether the hydrostatic hyper-
fine shift can reproduce the measurement data by perform-
ing a full simulation of the extended ESR spectra of Fig. 4.
The upper offset traces of Figs. 8(a) and 8(b) are the results
of a numerical model incorporating the finite-element
simulation of δB1 and the hyperfine shift calculations
[found by applying Eq. (4) to the strain simulations of
Fig. 6]. For every pixel in the device where dopants are
present, we use the predetermined ΔAðϵÞ (with the
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FIG. 8. (a) Rabi-levelled echo-detected field sweeps of tran-
sitions 1A–8A (resonator A). The bottom traces are the measured
data from Fig. 4 (plotted again here for ease of comparison with
theory), while the top traces are offset intentionally and are the
results of our theoretical modeling. (b) Rabi-levelled echo-
detected field sweeps (measurement and simulation) of transi-
tions 1B–4B (resonator B). (c) The single spin-resonator coupling
strength g as a function of the field B0, extracted from transition
4B [marked with a black dashed box in (b)]. The red open circles
are derived from measurements of the Rabi frequency. Quanti-
tative agreement is observed with the simulated data (the red
solid line).
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experimental value of K) and calculate the spin transition
parameters by solving the modified Hamiltonian:

H=h ¼ H0=hþ ΔAðϵÞS · I: ð5Þ

For each B0 value, we calculate the spectral overlap of all
allowed transitions (ΔmF ¼ �1 and ΔmF ¼ 0) with the
resonator and weight the resulting spectrum from each
pixel with the corresponding donor concentration and the
appropriate component of the magnetic-field vacuum
fluctuations (Fig. 2), summing over all pixels to achieve
the spectra in Figs. 8(a) and 8(b). We note that the donor
doping profile used in this model [the red solid curve in
Fig. 1(b)] is the output of a TCAD simulation (discussed in
Sec. IV) that takes into account the ionization of donors
in the depletion region of the Schottky junction formed
between the aluminum wire and the silicon substrate. The
simulation strikingly reproduces many features in the
experimental data, including peak splittings, peak-height
asymmetries, and field orientation ϕ dependence, without a
single free parameter in the model.
Having successfully reproduced key features of the

ESR spectra, we investigate whether our model can also
capture the correlation of the magnetic-field vacuum
fluctuations δB1 and the spin-resonance frequency, as
discussed in Sec. III. As noted previously, the Rabi
frequency can be expressed in terms of the single spin-
resonator coupling strength g ¼ γeMjδB1⊥j and the mean
intracavity photon number n̄ through the relation
ΩR ¼ 2g

ffiffiffī
n

p
. In the Rabi-levelled sweeps, ΩR is held

constant as we pass over the transitions. We extract g as
a function of B0 for transition 1B [identified with a black
dashed box in Fig. 8(b)] by estimating n̄ at each field using
the experimental input power and a calibration of the loss
in our setup [13]. In Fig. 8(c), we plot the result of the
experiment (the red open circles) overlaid on the simulated
spectra (the gray dashed line). The data quantify the
qualitative description offered earlier: the coupling strength
(or, equivalently, the vacuum fluctuations δB1) increases for
the spins that are further detuned (those close to the edge of
the wire) and reduces towards the center of the transition,
reaching the lowest couplings at the inner edge of the high-
field peak (the spins farthest from the wire). Next, we use
our model to simulate the expected g versus B0 depend-
ence. The result [the red solid line in Fig. 8(c)] is an almost
quantitative match to the experimental data.

VI. SUMMARY

In this paper, we discuss a range of mechanisms capable
of altering the resonance frequencies of donors in micro-
and nanoelectronic devices and find that strain resulting
from differential thermal contraction plays a considerable
part. We present a technique to study such strains in silicon
devices through high-sensitivity orientation-dependent ESR
spectroscopy. Our results are quantitatively reproduced by

considering the shift of the hyperfine interaction caused by
the hydrostatic component of strain [48]. The resulting
resonance frequency shifts of about 5 MHz for strains of
approximately 10−4 contribute to an order-of-magnitude
broadening of the ESR lines. While the measurements are
performed on bismuth donors in silicon, similar effects are
expected for the other group-V donors [48].
The level of agreement demonstrated between our model,

which combines finite-element simulations and experimen-
tally determined Hamiltonian parameters, and the measured
data shows that it accurately captures the underlying physics.
Remarkably, the simulation quantitatively reproduces the
experimental results with no free parameters in the model.
This analysis could be adapted to other device geometries
and spin systems and may prove to be useful for spin-based
device design. The results presented in this work have
implications for QIP with donors and in hybrid systems
such as superconducting quantum memories, which require
a predictability of spin-resonance frequencies and the ability
to engineer narrow spin linewidths.
The high sensitivity of the donor hyperfine interaction to

hydrostatic strain could be used to create a sensitive local
probe for strain in nanoelectronic devices. We estimate that,
with typical intrinsic linewidths achieved for donors in
isotopically enriched silicon of about 2 kHz [5], a single
donor could be used to detect strains of order10−7. Such strain
measurements could be integrated with other techniques for
donor metrology [50] to provide valuable insight into the
spatial variation of physical system parameters in nanoscale
quantum devices. The large strain sensitivity also opens the
prospect of driving spin resonance viamechanical resonators,
or coupling donors to phonons in circuit quantum electro-
dynamics experiments.
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APPENDIX A: SPIN-RESONANCE TRANSITIONS

The hyperfine interaction AS · I couples states in the
jmS;mIi basis that differ in the electron and nuclear spin
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projections such that ΔmS ¼ �1 and ΔmI ¼ ∓1. This
mixing can be seen by rewriting the interaction as a product
of the spin raising and lowering operators:

AS · I ¼ AðSXIX þ SYIY þ SZIZÞ

¼ A

�
SZIZ þ 1

2
½SþI− þ S−Iþ�

�
: ðA1Þ

In the coupled jF;mFi basis, these states therefore share the
same value of mF ¼ mS þmI . In general, we can expand
the jF;mFi basis on the jmS;mIi basis as

jF�; mFi ¼ a�mF

���� 1

2
; mF ∓ 1

2

E
þ b�mF

��� ∓ 1

2
; mF � 1

2

E
;

ðA2Þ
where we use F� to represent the higher or lower multiplet
F� ¼ I � S (i.e., Fþ ¼ 5 and F− ¼ 4 for 209Bi or the
triplet and singlet states for 31P). This expansion holds for
all states except those with mF ¼ �ðI þ SÞ (correspond-
ing to jmS ¼ �S;mI ¼ �Ii), which remain unmixed. The
mixing coefficients a�mF

(aþmF
¼ a−mF

) and b�mF

(bþmF
¼ −b−mF

) are determined by the value of mF, the
hyperfine interaction strength A and the external mag-
netic field B0 (or, more precisely, the electron Zeeman
energy relative to the hyperfine interaction) [9]. At high
magnetic fields (where Ez=h¼ γeB0≫A), a�mF

→ 1 and
b�mF

→0, while, at low magnetic fields (where γeB0 ≲ A),
strong mixing occurs.

1. SX type

When operating in the “orthogonal mode” of spin reso-
nance (B1⊥B0), the B1 field couples to the SX and IX spin
operators. Electron spin-resonance transitions may be driven
between jF;mFi states that contain components of the
uncoupled basis that differ by ΔmS ¼ �1, i.e., jF�; mFi ↔
jF�; mF − 1i and jF�; mFi ↔ jF∓; mF − 1i, as can be seen
from Eq. (A2). The first two transitions, (jFþ; mFi ↔
jFþ; mF − 1i and jF−; mFi ↔ jF−; mF − 1i), correspond
to high-field NMR transitions (which become ESR allowed
at low fields), while the third transition (jFþ; mFi ↔
jF−; mF − 1i) is a high-field ESR transition, and the fourth
(jF−; mFi ↔ jFþ; mF − 1i) is completely forbidden at
high fields—it corresponds to transitions where ΔmS¼�1
and ΔmI ¼ ∓2.
The transition matrix elements between these states are

given by

hFþ; mFjSX þ δIXjFþ; mF − 1i
¼ ½aþmF

bþmF−1 þ δðaþmF
aþmF−1 þ bþmF

bþmF−1Þ�=2; ðA3aÞ

hF−; mFjSX þ δIXjF−; mF − 1i
¼ ½b−mF

a−mF−1 þ δða−mF
a−mF−1 þ b−mF

b−mF−1Þ�=2; ðA3bÞ

hFþ; mFjSX þ δIXjF−; mF − 1i
¼ ½aþmF

a−mF−1 þ δðaþmF
b−mF−1 þ bþmF

a−mF−1Þ�=2; ðA3cÞ

hF−; mFjSX þ δIXjFþ; mF − 1i
¼ ½b−mF

bþmF−1 þ δðb−mF
aþmF−1 þ a−mF

bþmF−1Þ�=2; ðA3dÞ

where δ ¼ γn=γe is the ratio of the nuclear and electron spin
gyromagnetic ratios, which is typically on the order of 10−4

for group-V donors in silicon. At low and intermediate
fields (γeB0 ≲ A), the first terms in the matrix elements of
Eqs. (A3a)–(A3d) dominate over the components gener-
ated by the nuclear spin (those multiplied by δ). At high
magnetic fields, the nuclear spin component of the matrix
element is negligible for Eq. (A3c) but is the dominant term
in Eqs. (A3a) and (A3b) (the high-field NMR transitions).
It should be noted that, in general, the matrix elements
above are nonzero at low fields, with the exception of
identical particles (S ¼ I and δ ¼ 1) where the singlet
state (F ¼ 0) is ESR inactive. The singlet state becomes
ESR active (for example, in the case of phosphorus
S ¼ I ¼ 1=2) due to the differing gyromagnetic ratios of
the electron and nuclear spins.

2. “SZ” type

In the “parallel mode” of spin resonance (B1kB0), the B1

field couples to the SZ and IZ spin operators. Electron spin-
resonance transitions may be driven between jF;mFi states
that contain identical components of the uncoupled basis,
i.e., jF�; mFi ↔ jF∓; mFi [see Eq. (A2)], corresponding
to high-field flip-flop transitions (ΔmS ¼ �1 and
ΔmI ¼ ∓1). The matrix element between these states is
given by

hFþ; mFjSZ þ δIZjF−; mFi
¼ ðaþmF

b−mF
− a−mF

bþmF
Þ=2

þ δ½aþmF
b−mF

ðmF − 1=2Þ þ a−mF
bþmF

ðmF þ 1=2Þ�
¼ −aþmF

bþmF
þ δaþmF

bþmF
; ðA4Þ

where we use the symmetry of the mixing coefficients
(aþmF

¼ a−mF
and bþmF

¼ −b−mF
) to arrive at the final form of

Eq. (A4). Note that, for identical gyromagnetic ratios
(δ ¼ 1), the components of the matrix element cancel
exactly, and driving in the parallel mode is forbidden.
Furthermore, at high fields (where a�mF

→ 1 and b�mF
→ 0),

the matrix element becomes negligibly small. For the Si∶Bi
system (δ ≈ 10−4) at low magnetic fields, the SZ transitions
are appreciable, comparable in strength to the SX type.

APPENDIX B: PREDICTED ESR LINE SHAPE

Previous studies of the sample utilized in this work [24],
performed using a bulk ESR spectrometer (i.e., without
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the on-chip resonator) revealed a Gaussian line shape with
a peak-to-peak width of σB ¼ 12 μT for the high-field
mI ¼ −1=2 transition (j4;−1i ↔ j5; 0i in the jF;mFi
basis), at a frequency of ω=2π ¼ 9.53 GHz. This transition
displays df=dB ¼ 0.6γe, and thus an equivalent σf ¼
σB × df=dB0 ¼ 200 kHz broadening in the frequency
domain. This value agrees well with other studies of
bismuth-doped isotopically enriched silicon [10], where
a linewidth of 270 kHz was measured and found to be
constant in the frequency domain. For the j4;−4i↔ j5;−5i
transition studied in this work (with ω=2π ≈ 7.3 GHz),
df=dB0 ¼ −0.9γe (see Table I) and we expect σB ¼
σf=ðdf=dB0Þ ¼ 8 μT, providing a FWHM of about
20 μT. This width is substantially lower than the broad-
ening we observe in our measurements using the on-chip
microresonator, as depicted in Fig. 3.

APPENDIX C: MAGNETIC-FIELD
INHOMOGENEITY

A magnetic-field inhomogeneity, for example, pro-
duced by a Meissner screening of the static magnetic
field B0 in the vicinity of the superconducting wire, is not
expected to contribute to the splitting and broadening of
the ESR peaks observed in our experiment (Figs. 3 and 4).
We rule this mechanism out by comparing measurements
of the first spin-resonance transition, j4;−4i ↔ j5;−5i
(see Table I), for each of the three resonators, A, B, and C
(see Fig. 9). The width and the splitting of these peaks are
of similar size for each resonator, despite the transition for
resonator C (B0 ¼ 9.29 mT, df=dB0 ¼ −0.90γe) occur-
ring at twice the field of resonator B and 3 times the field
of resonator A. A broadening resulting from an inhomo-
geneous magnetic field increases in proportion to the
strength of the field.

APPENDIX D: STRAIN TENSOR SIMULATION

We perform finite-element strain simulations of our
device using the software package COMSOL Multiphysics.
Our model consists of a 50-nm-thick, 5-μm-wide aluminum
wire on a silicon substrate. We assume the aluminum to be
strain-free upon deposition, and we simulate cooling the
device to 20 mK using the temperature-dependent CTE of
aluminum [40,41] and silicon [39], as well as the aniso-
tropic stiffness coefficients for silicon [42]. The wire is
constructed at a 45° angle to the x axis in the x-y plane
(where xk½100�), such that it is aligned with the ½110�
crystal axis. The difference between the CTEs of Si and Al
produces device strains at low temperature. At each pixel in
the device, we extract the six independent strain compo-
nents in the h100i basis, which are plotted in Fig. 10.
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