66 research outputs found

    Effects of Phosphorus and Copper on Factors Influencing Nutrient Uptake, Photosynthesis, and Grain Yield of Wheat

    Get PDF
    Author Institution: Department of Agronomy, The Ohio State UniversityApplication of large amounts of phosphorus fertilizers is used to enhance early plant growth and yield of wheat (Triticum aestivum L.). This practice can lead to an accumulation of phosphorus in soil and a reduced copper uptake by plants which may result in a reduction of plastocyanin concentrations in chloroplasts. As a result, photosynthetic rates and crop yield can be adversely affected. While copper uptake is sometimes enhanced by vesicular-arbuscular mycorrhizal (VAM) fungi, large accumulations of soil phosphorus can reduce VAM-enhanced copper uptake

    Review on the Energy Storage Technologies with the Focus on Multi-Energy Systems

    Get PDF
    Energy storage is an important element of an energy system. In the power system, energy storage can be defined as a component that can be employed to generate a form of energy or utilize previously stored energy at different locations or times when it is required. Energy storage can enhance the stability of the grid, increase the reliability and efficiency of integrated systems that include renewable energy resources, and can also reduce emissions. A diverse set of storage technologies are currently utilized for the energy storage systems (ESSs) in a varied set of projects. This chapter provides information about the current ESS projects around the world and emphasizes the leading countries that are developing the applications of ESSs. The main categories of ESSs are explained in this chapter as follows: electrochemical, electromechanical, electromagnetic, and thermal storage. Moreover, the energy storage technologies are utilized in power grids for various reasons such as electricity supply capacity, electric energy time-shifting, on-site power, electric supply reserve capacity, frequency regulation, voltage support, and electricity bill management. Additionally, by integrating the various energy forms and developing the concept of multi-energy systems, ESSs become a fundamental component for the efficient operation of multi-energy systems. The main role of ESSs in multi-energy systems is to compensate for the fluctuations in power output from renewable energy resources. Moreover, the performance of the multi-energy system increases when it got integrated with an ESS. In this chapter, the applied ESS technologies in the context of the multi-energy systems are presented and explained.©2022 Wiley-VCH Verlag. This is the peer reviewed version of the following article: Vahid-Ghavidel, M., Javadi, S., Gough, M., Javadi, M. S., Santos, S. F., Shafie-khah, M. & Catalão, J. P.S. (2022). Review on the Energy Storage Technologies with the Focus on Multi-Energy Systems. In: Graditi, G. & Di Somma, M. (eds.) Technologies for Integrated Energy Systems and Networks, 105-122, which has been published in final form at https://doi.org/10.1002/9783527833634.ch5. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.fi=vertaisarvioitu|en=peerReviewed

    Infrastructure Resource Planning in Modern Power System

    Get PDF
    Abstract: Generation Expansion Planning (GEP) is one of the most important issues in long-term power system planning. In from past, investigators noticed to GEP and supply of energy. In power system planning, generation expansion planning is performed for 5-yrears planning horizon or more. There are two main objective functions in GEP. First is the minimization of investment cost and another one is the maximization of reliability. GEP use future likeable engineering economics function, in order to drive certain indicator. Supply of fuel problem is one of the most important of effective factors for result. For this reason, Some times GEP and fuel supply center go hand-inhand. In this case, construction and operation cost of transmission network add to power system costs. This paper presents the simultaneous generation expansion planning with Natura

    Energy storage system impact on the operation of a demand response aggregator

    Get PDF
    In this paper, we consider a demand response (DR) aggregator responsible for participating in the wholesale electricity market on behalf of the end-users who participated in the DR programs. Thus, the DR aggregator can trade its acquired DR within the short-term electricity markets, i.e., the day-ahead and the balancing (real-time) markets. In the proposed framework, the electricity market prices are considered uncertain, and a robust optimization approach is applied to address the uncertainties to maximize the profit of the DR aggregator. A model for analyzing the impact of the energy storage system (ESS) unit on a DR aggregator's performance is developed to provide more flexibility for the consumers. The direct interactions of a DR aggregator with an ESS are neglected in many models. However, this consideration can lead to improvement in the flexibility of the aggregator and also increase the profit of the entity by trading energy in the short-term markets to charge the ESS during the low-price periods and discharge it to the market while the electricity market prices are high. Hence, it is assumed that the DR aggregator owns an ESS unit and can cover a percentage of its traded power through the ESS. An analysis of the impact of the ESS unit on the DR aggregator's performance is applied to study the most appropriate size of the ESS that can maximize the profit of the aggregator. In addition, renewable energy production is employed for end-users through the installation of rooftop photovoltaic (PV) panels. This demand-side renewable generation can provide more flexibility for the participants in DR programs. Various feasible case studies have been applied to demonstrate the model's effectiveness and usefulness, and conclusions are duly drawn. The numerical results indicate that having an ESS seems necessary when the decision-maker desires to protect its profit from the worst-case scenarios and reduces the negative effect of the uncertain parameter, i.e., the wholesale electricity market prices. Thus, it can be shown that having a greater capacity for the ESS has a significant and direct impact on increasing the profit of the aggregator even in the worst-case scenarios, where the profit rises 20 % when the budget of uncertainty in the robust optimization is equal to 12.© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Multiobjective Congestion Management and Transmission Switching Ensuring System Reliability

    Get PDF
    Congestion in transmission lines is an important topic in power systems and it continues to be an area of active research. Various approaches have been proposed to mitigate congestion especially immediate ready ones such as Congestion Management (CM) and Transmission Switching (TS). Using either of the two or their combination (CMTS) may have undesirable consequences like increasing operational costs or increasing the number of switching of transmission lines. More switching aggravates system reliability and imposes extra costs on the operator. In this paper, a multi-objective model is introduced which reduces overall operation costs, the number of switching in transmission lines, and the congestion of lines, compared to available approaches which employ congestion management and TS simultaneously. To verify the performance of the proposed model, it is implemented using GAMS and tested on 6- and 118- bus IEEE test systems. A benders' decomposition approach was employed.© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Laser Therapy for Peyronie’s Disease: A Randomized Control Double-Blind Pilot Study

    Get PDF
    Introduction: The management of Peyronie’s disease (PD) has remained a therapeutic dilemma for physicians and there is no gold standard treatment. In this paper, we decided to investigate the beneficial effect of the intralesional administration of verapamil compared with the intralesional administration of verapamil plus a low-intensity laser (LIL).Methods: Research was activated from May 2016 to May 2018 and a total of 38 men aged 18 years and older completed the investigation. The subjects were randomly divided into 2 groups. Group 1 was composed of 22 patients that were treated only by verapamil (5 mg) plus a sham laser weekly for 6 weeks, and group 2 consisted of 22 patients that received a laser, using the BTL – 6000 HIGH-INTENSITY LASER 12 W machine and the same protocol of intralesional verapamil injection. The visual analogue scale (VAS) was used to evaluate pain during an erection, penile ultrasonography was used to measure plaque size, the penile curvature angle degree was measured using the photographs taken during an erection, and the International Index of Erectile Function questionnaire was used to assess erectile function. The follow-up treatment lasted for nine months, with visits performed in the 3rd and 9th months.Results: All study parameters decreased significantly after treatment in both arms, but the reduction in pain and penile curvature improvements in combination therapy revealed more significant changes in 3 months (p = .035, p=.032). Nevertheless, these improvements were not seen in the follow-up session after 9 months.Conclusion: A laser appears to be safe treatment modality in carefully-selected patients with PD. It has moderate efficacy in the short term

    Novel Hybrid Stochastic-Robust Optimal Trading Strategy for a Demand Response Aggregator in the Wholesale Electricity Market

    Get PDF
    The close interaction between the electricity market and the end-users can assist the demand response (DR) aggregator in handling and managing various uncertain parameters simultaneously to reduce their effect on the aggregator’s operation. As the DR aggregator’s main responsibility is to aggregate the obtained DR from individual consumers and trade it into the wholesale market. Another responsibility of the aggregator is proposing the DR programs (DRPs) to the end-users. This article proposes a model to handle these uncertainties through the development of a novel hybrid stochastic-robust optimization approach that incorporates the uncertainties around wholesale market prices and the participation rate of consumers. The behavior of the consumers engaging in DRPs is addressed through stochastic programming. Additionally, the volatility of the electricity market prices is modeled through a robust optimization method. Two DRPs are considered in this model to include both time-based and incentive-based DRPs, i.e., time-of-use and incentive-based DR program to study three sectors of consumers, namely industrial, commercial, and residential consumers. An energy storage system is also assumed to be operated by the aggregator to maximize its profit. The proposed mixed-integer linear hybrid stochastic-robust model improves the evaluation of DR aggregator’s scheduling for the probable worst-case scenario. Finally, to demonstrate the effectiveness of the proposed approach, the model is thoroughly simulated in a real case study.© 2021 IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0.fi=vertaisarvioitu|en=peerReviewed

    Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system

    Get PDF
    The optimal management of distributed energy resources (DERs) and renewable-based generation in multi-energy systems (MESs) is crucial as it is expected that these entities will be the backbone of future energy systems. To optimally manage these numerous and diverse entities, an aggregator is required. This paper proposes the self-scheduling of a DER aggregator through a hybrid Info-gap Decision Theory (IGDT)-stochastic approach in an MES. In this approach, there are several renewable energy resources such as wind and photovoltaic (PV) units as well as multiple DERs, including combined heat and power (CHP) units, and auxiliary boilers (ABs). The approach also considers an EV parking lot and thermal energy storage systems (TESs). Moreover, two demand response (DR) programs from both price-based and incentive-based categories are employed in the microgrid to provide flexibility for the participants. The uncertainty in the generation is addressed through stochastic programming. At the same time, the uncertainty posed by the energy market prices is managed through the application of the IGDT method. A major goal of this model is to choose the risk measure based on the nature and characteristics of the uncertain parameters in the MES. Additionally, the behavior of the risk-averse and risk-seeking decision-makers is also studied. In the first stage, the sole-stochastic results are presented and then, the hybrid stochastic-IGDT results for both risk-averse and risk-seeker decision-makers are discussed. The proposed problem is simulated on the modified IEEE 15-bus system to demonstrate the effectiveness and usefulness of the technique.© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes

    Get PDF
    This paper experimentally investigates the role of shear processes on the variation of critical Reynolds number and nonlinear flow through rough-walled rock fractures. A quantitative criterion was developed to quantify the onset of nonlinear flow by comprehensive combination of Forchheimer's law and Reynolds number. At each shear displacement, several high-precision water flow tests were carried out with different hydraulic gradients then the critical Reynolds number was determined based on the developed criterion. The results show that (i) the Forchheimer's law was fitted very well to experimental results of nonlinear fluid flow through rough-walled fractures, (ii) the coefficients of viscous and inertial pressure drops experience 4 and 7 orders of magnitude reduction during shear displacement, respectively, and (iii) the critical Reynolds number varies from 0.001 to 25 and experiences 4 orders of magnitude enlargement by increasing shear displacement from 0 to 20 mm. These findings may prove useful in proper understanding of fluid flow through rock fractures, or inclusions in computational studies of large-scale nonlinear flow in fractured rocks
    corecore