41 research outputs found

    Dynamic Response of a fast near infra-red Mueller matrix ellipsometer

    Full text link
    The dynamic response of a near infrared Ferroelectric Liquid Crystal based Mueller matrix ellipsometer (NIR FLC-MME) is presented. A time dependent simulation model, using the measured time response of the individual FLCs, is used to describe the measured temporal response. Furthermore, the impulse response of the detector and the pre-amplifier is characterized and included in the simulation model. The measured time-dependent intensity response of the MME is reproduced in simulations, and it is concluded that the switching time of the FLCs is the limiting factor for the Mueller matrix measurement time of the FLC-based MME. Based on measurements and simulations our FLC based NIR-MME system is estimated to operate at the maximum speed of approximately 16 ms per Mueller matrix measurement. The FLC-MME may be operated several times faster, since the switching time of the crystals depends on the individual crystal being switched, and to what state it is switched. As a demonstration, the measured temporal response of the Mueller matrix and the retardance of a thick liquid crystal variable retarder upon changing state is demonstrated.Comment: to be published in Journal of Modern Optics 20 pages, 6 figure

    Mueller matrix measurements and modeling pertaining to Spectralon white reflectance standards

    Get PDF
    The full Mueller matrix for a Spectralon white reflectance standard was measured in the incidence plane, to obtain the polarization state of the scattered light for different angles of illumination. The experimental setup was a Mueller matrix ellipsometer, by which measurements were performed for scattering angles measured relative to the normal of the Spectralon surface from −90° to 90° sampled at every 2.5° for an illumination wavelength of 532 nm. Previously, the polarization of light scattered from Spectralon white reflectance standards was measured only for four of the elements of the Muller matrix. As in previous investigations, the reflection properties of the Spectralon white reflectance standard was found to be close to those of a Lambertian surface for small scattering and illumination angles. At large scattering and illumination angles, all elements of the Mueller matrix were found to deviate from those of a Lambertian surface. A simple empirical model with only two parameters, was developed, and used to simulate the measured results with fairly good accuracy.publishedVersio

    Effects of optical activity to Mueller matrix ellipsometry of composed waveplates

    Get PDF
    Mueller matrix ellipsometry has been used to precisely characterize quartz waveplates for demanding applications in the semiconductor industry and high precision polarimetry. We have found this experimental technique to be beneficial to use because it enables us to obtain absolute and precise measurement of retardation in a wide spectral range, waveplate orientation, and compound waveplate adjustment. In this paper, the necessity of including the optical activity in the Mueller matrix model and data treatment is demonstrated. Particularly, the optical activity of the quartz influences the adjustment of misalignment between the perpendicularly oriented waveplates of the compound biplate. We demonstrate that omitting the optical activity from the model leads to inaccurate values of the misalignment. In addition, the depolarization effects caused by a finite monochromator bandwidth is included in the model. Incorporation of the optical activity to the Mueller matrix model has required a development of rigorous theory based on appropriate constitutive equations. The generalized Yeh's matrix algebra to bianisotropic media has been used for the calculation of the eigenmodes propagation in chiral materials with reduced symmetry. Based on the applied method, the authors have proposed approximated analytical form of the Mueller matrix representing optically active waveplate and biplate and provided discussion on the analytical and numerical limits of the method.Web of Science297104501043

    True Circular Dichroism in Optically Active Achiral Metasurfaces and Its Relation to Chiral Near-Fields

    Full text link
    Optically active achiral metasurfaces offer a promising way to detect chiral molecules based on chiroptic methods. The combination of plasmonic enhanced circular dichroism and reversible optical activity would boost the sensitivity and provide enantiomerselective surfaces while using a single sensing site. In this work, we use metasurfaces containing arrays of U-shaped resonators as a benchmark for analyzing the optical activity of achiral materials. Although the peculiar optical activity of these metasurfaces has 1 been quite well described, we present here an experimental and numerical quantitative determination of the different contributions to the measured optical activity. In particular, it is shown that linear birefringence and retardance contribute, but only marginally, to the apparent circular dichroism of the metasurface associated with the excitation of magnetoelectric modes. We then numerically demonstrate the peculiar near-field properties of the magneto-electric modes and explain how these properties could be reflected in the far-field polarimetric properties in the presence of chiral molecules. This work provides alternatives for the detection scheme of chiral molecules using plasmonic resonators.Comment: ACS Applied Optical Materials, 202

    Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm

    Full text link
    A fast multichannel Stokes/Mueller polarimeter with no mechanically moving parts has been designed to have close to optimal performance from 430-2000 nm by applying a genetic algorithm. Stokes (Mueller) polarimeters are characterized by their ability to analyze the full Stokes (Mueller) vector (matrix) of the incident light. This ability is characterized by the condition number, κ\kappa, which directly influences the measurement noise in polarimetric measurements. Due to the spectral dependence of the retardance in birefringent materials, it is not trivial to design a polarimeter using dispersive components. We present here both a method to do this optimization using a genetic algorithm, as well as simulation results. Our results include fast, broad-band polarimeter designs for spectrographic use, based on 2 and 3 Ferroelectric Liquid Crystals, whose material properties are taken from measured values. The results promise to reduce the measurement noise significantly over previous designs, up to a factor of 4.5 for a Mueller polarimeter, in addition to extending the spectral range.Comment: 10 pages, 6 figures, submitted to Optics Expres

    New spark test device for material characterization

    No full text
    An automated spark test system based on combining field emission and spark measurements, exploiting a discharging capacitor is investigated. In particular, the remaining charge on the capacitor is analytically solved assuming the field emitted current to follow the Fowler Nordheim expression. The latter allows for field emission measurements from pA to A currents, and spark detection by complete discharge of the capacitor. The measurement theory and experiments on Cu and W are discussed
    corecore