44 research outputs found

    Actin waves do not boost neurite outgrowth in the early stages of neuron maturation

    Get PDF
    During neurite development, Actin Waves (AWs) emerge at the neurite base and move up to its tip, causing a transient retraction of the Growth Cone (GC). Many studies have shown that AWs are linked to outbursts of neurite growth and, therefore, contribute to the fast elongation of the nascent axon. Using long term live cell-imaging, we show that AWs do not boost neurite outgrowth and that neurites without AWs can elongate for several hundred microns. Inhibition of Myosin II abolishes the transient GC retraction and strongly modifies the AWs morphology. Super-resolution nanoscopy shows that Myosin IIB shapes the growth cone-like AWs structure and is differently distributed in AWs and GCs. Interestingly, depletion of membrane cholesterol and inhibition of Rho GTPases decrease AWs frequency and velocity. Our results indicate that Myosin IIB, membrane tension, and small Rho GTPases are important players in the regulation of the AW dynamics. Finally, we suggest a role for AWs in maintaining the GCs active during environmental exploration

    Fabricación de materiales de circona dopados con hierro para su uso en prótesis dentales

    No full text
    Resumen del trabajo presentado al LVII Congreso Nacional de la Sociedad Española de Cerámica y Vidrio (SECV), celebrado en la Universitat Jaume I de Castellón del 26 al 29 de octubre de 2020.Peer reviewe

    Enhanced sulfur tolerance of BaCe0.65Zr0.20Y0.15O3-\u3b4-Ce0.85Gd0.15O2-\u3b4composite for hydrogen separation membranes

    No full text
    Thanks to its high hydrogen permeability and good chemical stability in moist CO2 environments, BaCe0.65Zr0.20Y0.15O3-\u3b4-Ce0.85Gd0.15O2-\u3b4 mixed conducting material is considered one of the most promising candidates for hydrogen separation ceramic membranes. In this work, its chemical stability under H2S-rich atmosphere was systematically investigated by in-situ electrochemical characterizations and ex-situ structural, chemical and morphological analyses. A performance degradation of the total conductivity depending on the H2S content was observed: at 700 \ub0C and under 1500 and 700 ppm of H2S the conductivity drop was 15% and 2% respectively. The complementary information gathered by morphological and chemical analyses showed that the changes responsible for the total conductivity degradation are mainly confined to the surface of the membrane. Indeed, after the exposure to the H2S-containing atmosphere, some traces of sulfur-related compounds were detected only on the top of the membrane while the bulk preserved a fully dense structure with well-defined grain boundaries and no evidence of cracks. However, no evidence of S-based compounds were revealed by structural investigations, probably due to the detection limit of these techniques and/or to the low crystallinity of the secondary phases. Contrary to Pd-based membranes that are severely deteriorated by a few ppm of sulfur, this material shows an acceptable stability even under 700 ppm of H2S and could be attractive for tailored applications such as, for example, operations related to steam reforming of methane often containing 10\u2013300 ppm of H2S

    The dual action of glioma-derived exosomes on neuronal activity: synchronization and disruption of synchrony

    Get PDF
    Seizures represent a frequent symptom in gliomas and significantly impact patient morbidity and quality of life. Although the pathogenesis of tumor-related seizures is not fully understood, accumulating evidence indicates a key role of the peritumoral microenvironment. Brain cancer cells interact with neurons by forming synapses with them and by releasing exosomes, cytokines, and other small molecules. Strong interactions among neurons often lead to the synchronization of their activity. In this paper, we used an in vitro model to investigate the role of exosomes released by glioma cell lines and by patient-derived glioma stem cells (GSCs). The addition of exosomes released by U87 glioma cells to neuronal cultures at day in vitro (DIV) 4, when neurons are not yet synchronous, induces synchronization. At DIV 7–12 neurons become highly synchronous, and the addition of the same exosomes disrupts synchrony. By combining Ca(2+) imaging, electrical recordings from single neurons with patch-clamp electrodes, substrate-integrated microelectrode arrays, and immunohistochemistry, we show that synchronization and de-synchronization are caused by the combined effect of (i) the formation of new neuronal branches, associated with a higher expression of Arp3, (ii) the modification of synaptic efficiency, and (iii) a direct action of exosomes on the electrical properties of neurons, more evident at DIV 7–12 when the threshold for spike initiation is significantly reduced. At DIV 7–12 exosomes also selectively boost glutamatergic signaling by increasing the number of excitatory synapses. Remarkably, de-synchronization was also observed with exosomes released by glioma-associated stem cells (GASCs) from patients with low-grade glioma but not from patients with high-grade glioma, where a more variable outcome was observed. These results show that exosomes released from glioma modify the electrical properties of neuronal networks and that de-synchronization caused by exosomes from low-grade glioma can contribute to the neurological pathologies of patients with brain cancers

    The dual action of glioma-derived exosomes on neuronal activity: synchronization and disruption of synchrony

    Get PDF
    Seizures represent a frequent symptom in gliomas and significantly impact patient morbidity and quality of life. Although the pathogenesis of tumor-related seizures is not fully understood, accumulating evidence indicates a key role of the peritumoral microenvironment. Brain cancer cells interact with neurons by forming synapses with them and by releasing exosomes, cytokines, and other small molecules. Strong interactions among neurons often lead to the synchronization of their activity. In this paper, we used an in vitro model to investigate the role of exosomes released by glioma cell lines and by patient-derived glioma stem cells (GSCs). The addition of exosomes released by U87 glioma cells to neuronal cultures at day in vitro (DIV) 4, when neurons are not yet synchronous, induces synchronization. At DIV 7–12 neurons become highly synchronous, and the addition of the same exosomes disrupts synchrony. By combining Ca2+ imaging, electrical recordings from single neurons with patch-clamp electrodes, substrate-integrated microelectrode arrays, and immunohistochemistry, we show that synchronization and de-synchronization are caused by the combined effect of (i) the formation of new neuronal branches, associated with a higher expression of Arp3, (ii) the modification of synaptic efficiency, and (iii) a direct action of exosomes on the electrical properties of neurons, more evident at DIV 7–12 when the threshold for spike initiation is significantly reduced. At DIV 7–12 exosomes also selectively boost glutamatergic signaling by increasing the number of excitatory synapses. Remarkably, de-synchronization was also observed with exosomes released by glioma-associated stem cells (GASCs) from patients with low-grade glioma but not from patients with high-grade glioma, where a more variable outcome was observed. These results show that exosomes released from glioma modify the electrical properties of neuronal networks and that de-synchronization caused by exosomes from low-grade glioma can contribute to the neurological pathologies of patients with brain cancers
    corecore