34 research outputs found

    Using Multiple Sources of Knowledge to Investigate Northern Environmental Change: Regional Ecological Impacts of a Storm Surge in the Outer Mackenzie Delta, N.W.T.

    Get PDF
    Field data, remote sensing, and Inuvialuit knowledge were synthesized to document regional ecological change in the outer Mackenzie Delta and to explore the timing, causes, and implications of this phenomenon. In September 1999, a large magnitude storm surge inundated low-lying areas of the outer Mackenzie Delta. The storm was among the most intense on record and resulted in the highest water levels ever measured at the delta front. Synthesis of scientific and Inuvialuit knowledge indicates that flooding during the 1999 storm surge increased soil salinity and caused widespread vegetation death. Vegetation cover was significantly reduced in areas affected by the surge and was inversely related to soil salinity. Change detection analysis, using remotely sensed imagery bracketing the 1999 storm event, indicates severe impacts on at least 13 200 ha of terrestrial vegetation in the outer delta. Inuvialuit knowledge identifying the 1999 surge as anomalous is corroborated by geochemical profiles of permafrost and by a recently published paleo-environmental study, which indicates that storm surge impacts of this magnitude have not previously occurred during the last millennium. Almost a decade after the 1999 storm surge event, ecological recovery has been minimal. This broad-scale vegetation change is likely to have significant implications for wildlife and must be considered in regional ecosystem planning and in the assessment and monitoring of the cumulative impacts of development. Our investigations show that Inuvialuit were aware of the 1999 storm surge and the environmental impacts several years before the scientific and regulatory communities recognized their significance. This study highlights the need for multidisciplinary and locally informed approaches to identifying and understanding Arctic environmental change.La synthĂšse des donnĂ©es d’exploitation et de tĂ©lĂ©dĂ©tection de mĂȘme que des connaissances des Inuvialuit a Ă©tĂ© effectuĂ©e afin de rĂ©pertorier les changements Ă©cologiques enregistrĂ©s dans la rĂ©gion extĂ©rieure du delta du Mackenzie et d’explorer la temporisation, les causes et les incidences de ce phĂ©nomĂšne. En septembre 1999, une onde de tempĂȘte de grande magnitude a inondĂ© les zones de faible Ă©lĂ©vation de l’extĂ©rieur du delta du Mackenzie. Il s’agit de la tempĂȘte la plus intense Ă  n’avoir jamais Ă©tĂ© enregistrĂ©e, ce qui s’est traduit par les niveaux d’eau les plus Ă©levĂ©s Ă  n’avoir jamais Ă©tĂ© mesurĂ©s Ă  la hauteur du delta. La synthĂšse des donnĂ©es scientifiques et des connaissances des Inuvialuit nous montre que l’inondation de 1999 a eu pour effet d’augmenter la salinitĂ© du sol et a entraĂźnĂ© la mort de la vĂ©gĂ©tation Ă  grande Ă©chelle. La couverture vĂ©gĂ©tale a Ă©tĂ© rĂ©duite considĂ©rablement dans les zones visĂ©es par l’onde et Ă©tait inversement reliĂ©e Ă  la salinitĂ© du sol. L’analyse des dĂ©tections de changement effectuĂ©e au moyen de l’imagerie tĂ©lĂ©dĂ©tectĂ©e dans le cas de la tempĂȘte de 1999 laisse entrevoir de fortes incidences sur au moins 13 200 hectares de vĂ©gĂ©tation terrestre dans l’extĂ©rieur du delta. Les connaissances des Inuvialuit, qui affirment que l’onde de 1999 Ă©tait anormale, sont corroborĂ©es par les profils gĂ©ochimiques du pergĂ©lisol ainsi que par une Ă©tude palĂ©oenvironnementale qui indique que des incidences de cette ampleur dĂ©coulant d’une onde de tempĂȘte ne se sont pas produites Ă  un autre moment donnĂ© du dernier millĂ©naire. PrĂšs d’une dĂ©cennie aprĂšs l’onde de tempĂȘte de 1999, le rĂ©tablissement Ă©cologique Ă©tait minime. Ce changement de vĂ©gĂ©tation Ă  grande Ă©chelle aura vraisemblablement d’importantes incidences sur la faune et doit entrer en considĂ©ration dans la planification de l’écosystĂšme rĂ©gional ainsi que dans l’évaluation et la surveillance des incidences cumulatives des travaux d’amĂ©nagement et de mise en valeur. Nos enquĂȘtes nous ont permis de constater que les Inuvialuit Ă©taient conscients des incidences environnementales de l’onde de tempĂȘte de 1999 plusieurs annĂ©es avant que les scientifiques et le personnel s’occupant de la rĂ©glementation ne reconnaissent leur importance. Cette Ă©tude fait ressortir la nĂ©cessitĂ© d’avoir des mĂ©thodes multidisciplinaires et de faire appel aux gens de la rĂ©gion pour dĂ©terminer et comprendre les changements environnementaux dans l’Arctique

    Review of searches for vector-like quarks, vector-like leptons, and heavy neutral leptons in proton-proton collisions at s= \sqrt{s}= 13 TeV at the CMS experiment

    No full text
    The LHC has provided an unprecedented amount of proton-proton collision data, bringing forth exciting opportunities to address fundamental open questions in particle physics. These questions can potentially be answered by performing searches for very rare processes predicted by models that attempt to extend the standard model of particle physics. The data collected by the CMS experiment in 2015-2018 at a center-of-mass energy of 13 TeV help to test the standard model at the highest precision ever and potentially discover new physics. An interesting opportunity is presented by the possibility of new fermions with masses ranging from the MeV to the TeV scale. Such new particles appear in many possible extensions of the standard model and are well motivated theoretically. They may explain the appearance of three generations of leptons and quarks, the mass hierarchy across the generations, and the nonzero neutrino masses. In this report, the status of searches targeting vector-like quarks, vector-like leptons, and heavy neutral leptons at the CMS experiment is discussed. A complete overview of final states is provided together with their complementarity and partial combination. The discovery potential for several of these searches at the High-Luminosity LHC is also discussed.The LHC has provided an unprecedented amount of proton-proton collision data, bringing forth exciting opportunities to address fundamental open questions in particle physics. These questions can potentially be answered by performing searches for very rare processes predicted by models that attempt to extend the standard model of particle physics. The data collected by the CMS experiment in 2015-2018 at a center-of-mass energy of 13 TeV help to test the standard model at the highest precision ever and potentially discover new physics. An interesting opportunity is presented by the possibility of new fermions with masses ranging from the MeV to the TeV scale. Such new particles appear in many possible extensions of the standard model and are well motivated theoretically. They may explain the appearance of three generations of leptons and quarks, the mass hierarchy across the generations, and the nonzero neutrino masses. In this report, the status of searches targeting vector-like quarks, vector-like leptons, and heavy neutral leptons at the CMS experiment is discussed. A complete overview of final states is provided together with their complementarity and partial combination. The discovery potential for several of these searches at the High-Luminosity LHC is also discussed

    Search for CPCP violation in D0^0→\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for charge-parity D0^0→\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0→\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb−1^{-1}, which consists of about 10 billion events containing a pair of áș–adrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D∗+^{*+}→\to D0π+^0\pi^+ and D∗−^{*-}→\to D0π−^0\pi^-. The D0^0→\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0→\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 →\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 →\to KS0π+π−^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 →\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    The CMS Statistical Analysis and Combination Tool: COMBINE

    No full text
    International audienceThis paper describes the COMBINE software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to run COMBINE and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details of COMBINE. However, the online documentation referenced within this paper provides an up-to-date and complete user guide
    corecore