2,495 research outputs found

    Radiosensitivity of Breast Cancer Cells Is Dependent on the Organ Microenvironment

    Get PDF
    Background Distant metastasis is the leading risk factor of death in breast cancer patients, with lung and liver being commonly involved sites of distant seeding. Ongoing clinical trials are studying the benefit from additional local treatment to these metastatic sites with radiation therapy. However, little is known about the tissue-specific microenvironment and the modulating response to treatments due to limitations of traditional in vitro systems. By using biomatrix scaffolds (BMSs) to recreate the complex composition of extracellular matrices in normal organs, we chose to study the radiotherapy response with engineered breast cancer “metastases” in liver and lung organ-specific tissues. Methods Liver and lung BMSs were prepared for tissue culture. Human breast cancer cell lines were passaged on normal tissue culture plates or tissue culture plates coated with Matrigel, liver BMSs, and lung BMSs. Clonogenic assays were performed to measure cell survival with varying doses of radiation. Reactive Oxygen Species (ROS) detection assay was used to measure ROS levels after 6 Gy irradiation to cancer cells.ResultsThe response of breast cell lines to varying doses of radiotherapy is affected by their in vitro acellular microenvironment. Breast cancer cells grown in liver BMSs were more radiosensitive than when grown in lung BMSs. ROS levels for breast cancer cells cultured in lung and liver BMSs were higher than that in plastic or in Matrigel plate cells, before and after radiotherapy, highlighting the interaction with surrounding tissue-specific growth factors and cytokines. ROSs in both lung and liver BMSs were significantly increased after radiotherapy delivery, suggesting these sites create prime environments for radiation-induced cell death. Conclusions The therapeutic response of breast cancer metastases is dependent on the organ-specific microenvironment. The interaction between tissue microenvironment in these organs may identify sensitivity of therapeutic drug targets and radiation delivery for future studies

    NGC 7582: The Prototype Narrow-Line X-ray Galaxy

    Get PDF
    NGC 7582 is a candidate prototype of the Narrow Line X-ray Galaxies (NLXGs) found in deep X-ray surveys. An ASCA observation shows the hard (> 3 keV) X-ray continuum of NGC 7582 drops 40% in ~6 ks, implying an AGN, while the soft band (< 3 keV) does not drop in concert with the hard continuum, requiring a separate component. The X-ray spectrum of NGC 7582 also shows a clear 0.5-2 keV soft (kT = 0.8 (+0.9,-0.3) keV or Gamma = 2.4 +/- 0.6; L(X) = 6 x 10**40 ergs s**-1) low--energy component, in addition to a heavily absorbed [N(H) = (6 +/- 2)\times 10**22 cm**-2 ] and variable 2-10 keV power law [Gamma = 0.7 (+0.3,-0.4); L(X) = (1.7-2.3) x 10**42 ergs s**-1]. This is one of the flattest 2-10 keV slopes in any AGN observed with ASCA. (The ROSAT HRI image of NGC 7582 further suggests extent to the SE.) These observations make it clear that the hard X-ray emission of NGC 7582, the most "narrow-line" of the NLXGs, is associated with an AGN. The strong suggestion is that all NLXGs are obscured AGNs, as hypothesized to explain the X-ray background spectral paradox. The separate soft X-ray component makes NGC 7582 (and by extension other NLXGs) detectable as a ROSAT source.Comment: text: Latex2e 10 pages, including 1 table, and 2 postscript figures via psfi

    Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe

    Get PDF
    Vector-borne diseases are among those most sensitive to climate because the ecology of vectors and the development rate of pathogens within them are highly dependent on environmental conditions. Bluetongue (BT), a recently emerged arboviral disease of ruminants in Europe, is often cited as an illustration of climate's impact on disease emergence, although no study has yet tested this association. Here, we develop a framework to quantitatively evaluate the effects of climate on BT's emergence in Europe by integrating high-resolution climate observations and model simulations within a mechanistic model of BT transmission risk. We demonstrate that a climate-driven model explains, in both space and time, many aspects of BT's recent emergence and spread, including the 2006 BT outbreak in northwest Europe which occurred in the year of highest projected risk since at least 1960. Furthermore, the model provides mechanistic insight into BT's emergence, suggesting that the drivers of emergence across Europe differ between the South and the North. Driven by simulated future climate from an ensemble of 11 regional climate models, the model projects increase in the future risk of BT emergence across most of Europe with uncertainty in rate but not in trend. The framework described here is adaptable and applicable to other diseases, where the link between climate and disease transmission risk can be quantified, permitting the evaluation of scale and uncertainty in climate change's impact on the future of such diseases

    Optimum structure for a uniform load over multiple spans

    Get PDF
    This paper presents a new half-plane Michell structure that transmits a uniformly distributed load of infinite horizontal extent to a series of equally-spaced pinned supports. Full kinematic description of the structure is obtained for the case when the maximum allowable tensile stress is greater than or equal to the allowable compressive stress. Although formal proof of optimality of the solution presented is not yet available, the proposed analytical solution is supported by substantial numerical evidence, involving the solution of problems with in excess of 10 billion potential members. Furthermore, numerical solutions for various combinations of unequal allowable stresses suggest the existence of a family of related, simple, and practically relevant structures, which range in form from a Hemp-type arch with vertical hangers to a structure which strongly resembles a cable-stayed bridge

    Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation.

    Get PDF
    The crystal structure of Dhaf4260 from Desulfitobacterium hafniense DCB-2 was determined by single-wavelength anomalous diffraction (SAD) to a resolution of 2.01 Å using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). This protein structure is the first representative of the PF04016 (DUF364) Pfam family and reveals a novel combination of two well known domains (an enolase N-terminal-like fold followed by a Rossmann-like domain). Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The genome context of Dhaf4260 and homologs additionally supports a role in heavy-metal chelation

    Structure of the γ-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-γ-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases.

    Get PDF
    Dipeptidyl-peptidase VI from Bacillus sphaericus and YkfC from Bacillus subtilis have both previously been characterized as highly specific γ-D-glutamyl-L-diamino acid endopeptidases. The crystal structure of a YkfC ortholog from Bacillus cereus (BcYkfC) at 1.8 Å resolution revealed that it contains two N-terminal bacterial SH3 (SH3b) domains in addition to the C-terminal catalytic NlpC/P60 domain that is ubiquitous in the very large family of cell-wall-related cysteine peptidases. A bound reaction product (L-Ala-γ-D-Glu) enabled the identification of conserved sequence and structural signatures for recognition of L-Ala and γ-D-Glu and, therefore, provides a clear framework for understanding the substrate specificity observed in dipeptidyl-peptidase VI, YkfC and other NlpC/P60 domains in general. The first SH3b domain plays an important role in defining substrate specificity by contributing to the formation of the active site, such that only murein peptides with a free N-terminal alanine are allowed. A conserved tyrosine in the SH3b domain of the YkfC subfamily is correlated with the presence of a conserved acidic residue in the NlpC/P60 domain and both residues interact with the free amine group of the alanine. This structural feature allows the definition of a subfamily of NlpC/P60 enzymes with the same N-terminal substrate requirements, including a previously characterized cyanobacterial L-alanine-γ-D-glutamate endopeptidase that contains the two key components (an NlpC/P60 domain attached to an SH3b domain) for assembly of a YkfC-like active site

    Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.

    Get PDF
    The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity

    "Best fit" framework synthesis: refining the method

    Get PDF
    Background Following publication of the first worked example of the “best fit” method of evidence synthesis for the systematic review of qualitative evidence in this journal, the originators of the method identified a need to specify more fully some aspects of this particular derivative of framework synthesis. Methods and Results We therefore present a second such worked example in which all techniques are defined and explained, and their appropriateness is assessed. Specified features of the method include the development of new techniques to identify theories in a systematic manner; the creation of an a priori framework for the synthesis; and the “testing” of the synthesis. An innovative combination of existing methods of quality assessment, analysis and synthesis is used to complete the process. This second worked example was a qualitative evidence synthesis of employees’ views of workplace smoking cessation interventions, in which the “best fit” method was found to be practical and fit for purpose. Conclusions The method is suited to producing context-specific conceptual models for describing or explaining the decision-making and health behaviours of patients and other groups. It offers a pragmatic means of conducting rapid qualitative evidence synthesis and generating programme theories relating to intervention effectiveness, which might be of relevance both to researchers and policy-makers
    corecore