35,952 research outputs found
ICE encounter operations
The operations encompassing the International Cometary Explorer's (ICE) encounter with the Comet Giacobini-Zinner on September 11, 1985 are documented. The ICE mission presented new challenges for the Deep Space Network (DSN) 64 meter subnetwork. Because of poor telemetry link margin predicted for Giacobini-Zinner (GZ) encounter, supplemental support by the Japanese Institute for Space and Astronautical Sciences 64-meter antenna at Usuda, Japan and the 305-meter Arecibo Radio Observatory in Puerto Rico was required. To improve the 64 meter subnetwork telemetry performance the following were also implemented: (1) Real time antenna array of 64 meter and 34 meter at a single complex and the required performance testing; and (2) Nonreal time antenna array of two complexes was implemented as a backup in the event of ground or spacecraft failure
Uniform Silicon Isotope Ratios Across the Milky Way Galaxy
We report the relative abundances of the three stable isotopes of silicon,
Si, Si and Si, across the Galaxy using the transition of silicon monoxide. The chosen sources represent a range in
Galactocentric radii () from 0 to 9.8 kpc. The high spectral
resolution and sensitivity afforded by the GBT permit isotope ratios to be
corrected for optical depths. The optical-depth-corrected data indicate that
the secondary-to-primary silicon isotope ratios
and vary much less than predicted on the basis of
other stable isotope ratio gradients across the Galaxy. Indeed, there is no
detectable variation in Si isotope ratios with . This lack of an
isotope ratio gradient stands in stark contrast to the monotonically decreasing
trend with exhibited by published secondary-to-primary oxygen
isotope ratios. These results, when considered in the context of the
expectations for chemical evolution, suggest that the reported oxygen isotope
ratio trends, and perhaps that for carbon as well, require further
investigation. The methods developed in this study for SiO isotopologue ratio
measurements are equally applicable to Galactic oxygen, carbon and nitrogen
isotope ratio measurements, and should prove useful for future observations of
these isotope systems.Comment: 18 pages, 12 figures, 2 tables. Published in The Astrophysical
Journal, Volume 839, Issue
Flexible conformable hydrophobized surfaces for turbulent flow drag reduction
In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced using two different methods: Large roughness features were created by electrodeposition on copper meshes; Small roughness features were created by embedding carbon nanoparticles (soot) into Polydimethylsiloxane (PDMS). Both samples were made into cylinders with a diameter under 12 mm. To characterize the samples, scanning electron microscope (SEM) images and confocal microscope images were taken. The confocal microscope images were taken with each sample submerged in water to show the extent of the plastron. The hydrophobized electrodeposited copper mesh cylinders showed drag reductions of up to 32% when comparing the superhydrophobic state with a wetted out state. The soot covered cylinders achieved a 30% drag reduction when comparing the superhydrophobic state to a plain cylinder. These results were obtained for turbulent flows with Reynolds numbers 10,000 to 32,500
Negative Energy Density States for the Dirac Field in Flat Spacetime
Negative energy densities in the Dirac field produced by state vectors that
are the superposition of two single particle electron states are examined. I
show that for such states the energy density of the field is not bounded from
below and that the quantum inequalities derived for scalar fields are
satisfied. I also show that it is not possible to produce negative energy
densities in a scalar field using state vectors that are arbitrary
superpositions of single particle states.Comment: 11 pages, LaTe
Maintaining a Wormhole with a Scalar Field
It is well known that it takes matter that violates the averaged weak energy
condition to hold the throat of a wormhole open. The production of such
``exotic'' matter is usually discussed within the context of quantum field
theory. In this paper I show that it is possible to produce the exotic matter
required to hold a wormhole open classically. This is accomplished by coupling
a scalar field to matter that satisfies the weak energy condition. The
energy-momentum tensor of the scalar field and the matter separately satisfy
the weak energy condition, but there exists an interaction energy-momentum
tensor that does not. It is this interaction energy-momentum tensor that allows
the wormhole to be maintained.Comment: 12 pages, LaTe
Electrically driven convection in a thin annular film undergoing circular Couette flow
We investigate the linear stability of a thin, suspended, annular film of
conducting fluid with a voltage difference applied between its inner and outer
edges. For a sufficiently large voltage, such a film is unstable to
radially-driven electroconvection due to charges which develop on its free
surfaces. The film can also be subjected to a Couette shear by rotating its
inner edge. This combination is experimentally realized using films of smectic
A liquid crystals. In the absence of shear, the convective flow consists of a
stationary, azimuthally one-dimensional pattern of symmetric, counter-rotating
vortex pairs. When Couette flow is applied, an azimuthally traveling pattern
results. When viewed in a co-rotating frame, the traveling pattern consists of
pairs of asymmetric vortices. We calculate the neutral stability boundary for
arbitrary radius ratio and Reynolds number of the shear
flow, and obtain the critical control parameter and the critical azimuthal mode number . The
Couette flow suppresses the onset of electroconvection, so that . The calculated suppression is
compared with experiments performed at and .Comment: 17 pages, 2 column with 9 included eps figures. See also
http://mobydick.physics.utoronto.c
Optimization of field-dependent nonperturbative renormalization group flows
We investigate the influence of the momentum cutoff function on the
field-dependent nonperturbative renormalization group flows for the
three-dimensional Ising model, up to the second order of the derivative
expansion. We show that, even when dealing with the full functional dependence
of the renormalization functions, the accuracy of the critical exponents can be
simply optimized, through the principle of minimal sensitivity, which yields
and .Comment: 4 pages, 3 figure
- …