Uniform Silicon Isotope Ratios Across the Milky Way Galaxy


We report the relative abundances of the three stable isotopes of silicon, 28^{28}Si, 29^{29}Si and 30^{30}Si, across the Galaxy using the v=0,J=1β†’0v = 0, J = 1 \to 0 transition of silicon monoxide. The chosen sources represent a range in Galactocentric radii (RGCR_{\rm GC}) from 0 to 9.8 kpc. The high spectral resolution and sensitivity afforded by the GBT permit isotope ratios to be corrected for optical depths. The optical-depth-corrected data indicate that the secondary-to-primary silicon isotope ratios 29Si/28Si^{29}{\rm Si}/^{28}{\rm Si} and 30Si/28Si^{30}{\rm Si}/^{28}{\rm Si} vary much less than predicted on the basis of other stable isotope ratio gradients across the Galaxy. Indeed, there is no detectable variation in Si isotope ratios with RGCR_{\rm GC}. This lack of an isotope ratio gradient stands in stark contrast to the monotonically decreasing trend with RGCR_{\rm GC} exhibited by published secondary-to-primary oxygen isotope ratios. These results, when considered in the context of the expectations for chemical evolution, suggest that the reported oxygen isotope ratio trends, and perhaps that for carbon as well, require further investigation. The methods developed in this study for SiO isotopologue ratio measurements are equally applicable to Galactic oxygen, carbon and nitrogen isotope ratio measurements, and should prove useful for future observations of these isotope systems.Comment: 18 pages, 12 figures, 2 tables. Published in The Astrophysical Journal, Volume 839, Issue

    Similar works