2,067 research outputs found
Isotope effects and possible pairing mechanism in optimally doped cuprate superconductors
We have studied the oxygen-isotope effects on T_{c} and in-plane penetration
depth \lambda_{ab}(0) in an optimally doped 3-layer cuprate
Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10+y} (T_{c} \sim 107 K). We find a small
oxygen-isotope effect on T_{c} (\alpha_{O} = 0.019), and a substantial effect
on \lambda_{ab} (0) (\Delta \lambda_{ab} (0)/\lambda_{ab} (0) = 2.5\pm0.5%).
The present results along with the previously observed isotope effects in
single-layer and double-layer cuprates indicate that the isotope exponent
\alpha_{O} in optimally doped cuprates is small while the isotope effect on the
in-plane effective supercarrier mass is substantial and nearly independent of
the number of the CuO_{2} layers. A plausible pairing mechanism is proposed to
explain the isotope effects, high-T_{c} superconductivity and tunneling spectra
in a consistent way.Comment: 5 pages, 4 figure
Virtual Coronary Intervention: A Treatment Planning Tool Based Upon the Angiogram
Objectives: This study sought to assess the ability of a novel virtual coronary intervention (VCI) tool based on invasive angiography to predict the patient's physiological response to stenting. Background: Fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) is associated with improved clinical and economic outcomes compared with angiographic guidance alone. Virtual (v)FFR can be calculated based upon a 3-dimensional (3D) reconstruction of the coronary anatomy from the angiogram, using computational fluid dynamics (CFD) modeling. This technology can be used to perform virtual stenting, with a predicted post-PCI FFR, and the prospect of optimized treatment planning. Methods: Patients undergoing elective PCI had pressure-wire-based FFR measurements pre- and post-PCI. A 3D reconstruction of the diseased artery was generated from the angiogram and imported into the VIRTUheart workflow, without the need for any invasive physiological measurements. VCI was performed using a radius correction tool replicating the dimensions of the stent deployed during PCI. Virtual FFR (vFFR) was calculated pre- and post-VCI, using CFD analysis. vFFR pre- and post-VCI were compared with measured (m)FFR pre- and post-PCI, respectively. Results: Fifty-four patients and 59 vessels underwent PCI. The mFFR and vFFR pre-PCI were 0.66 ± 0.14 and 0.68 ± 0.13, respectively. Pre-PCI vFFR deviated from mFFR by ±0.05 (mean Δ = -0.02; SD = 0.07). The mean mFFR and vFFR post-PCI/VCI were 0.90 ± 0.05 and 0.92 ± 0.05, respectively. Post-VCI vFFR deviated from post-PCI mFFR by ±0.02 (mean Δ = -0.01; SD = 0.03). Mean CFD processing time was 95 s per case. Conclusions: The authors have developed a novel VCI tool, based upon the angiogram, that predicts the physiological response to stenting with a high degree of accuracy
The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians
Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms' thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shift
When is rotational angiography superior to conventional single-plane angiography for planning coronary angioplasty?
Objectives: To investigate the value of rotational coronary angiography (RoCA) in the context of percutaneous coronary intervention (PCI) planning.
Background: As a diagnostic tool, RoCA is associated with decreased patient irradiation and contrast use compared with conventional coronary angiography (CA) and provides superior appreciation of three-dimensional anatomy. However, its value in PCI remains unknown.
Methods: We studied stable coronary artery disease assessment and PCI planning by interventional cardiologists. Patients underwent either RoCA or conventional CA pre-PCI for planning. These were compared with the referral CA (all conventional) in terms of quantitative lesion assessment and operator confidence. An independent panel reanalyzed all parameters.
Results: Six operators performed 127 procedures (60 RoCA, 60 conventional CA, and 7 crossed-over) and assessed 212 lesions. RoCA was associated with a reduction in the number of lesions judged to involve a bifurcation (23 vs. 30 lesions, P < 0.05) and a reduction in the assessment of vessel caliber (2.8 vs. 3.0 mm, P < 0.05). RoCA improved confidence assessing lesion length (P = 0.01), percentage stenosis (P = 0.02), tortuosity (P < 0.04), and proximity to a bifurcation (P = 0.03), particularly in left coronary artery cases. X-ray dose, contrast agent volume, and procedure duration were not significantly different.
Conclusions: Compared with conventional CA, RoCA augments quantitative lesion assessment, enhances confidence in the assessment of coronary artery disease and the precise details of the proposed procedure, but does not affect X-ray dose, contrast agent volume, or procedure duration. © 2015 Wiley Periodicals, Inc
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
Mean flow and spiral defect chaos in Rayleigh-Benard convection
We describe a numerical procedure to construct a modified velocity field that
does not have any mean flow. Using this procedure, we present two results.
Firstly, we show that, in the absence of mean flow, spiral defect chaos
collapses to a stationary pattern comprising textures of stripes with angular
bends. The quenched patterns are characterized by mean wavenumbers that
approach those uniquely selected by focus-type singularities, which, in the
absence of mean flow, lie at the zig-zag instability boundary. The quenched
patterns also have larger correlation lengths and are comprised of rolls with
less curvature. Secondly, we describe how mean flow can contribute to the
commonly observed phenomenon of rolls terminating perpendicularly into lateral
walls. We show that, in the absence of mean flow, rolls begin to terminate into
lateral walls at an oblique angle. This obliqueness increases with Rayleigh
number.Comment: 14 pages, 19 figure
Universality and the Renormalisation Group
Several functional renormalisation group (RG) equations including Polchinski
flows and Exact RG flows are compared from a conceptual point of view and in
given truncations. Similarities and differences are highlighted with special
emphasis on stability properties. The main observations are worked out at the
example of O(N) symmetric scalar field theories where the flows, universal
critical exponents and scaling potentials are compared within a derivative
expansion. To leading order, it is established that Polchinski flows and ERG
flows - despite their inequivalent derivative expansions - have identical
universal content, if the ERG flow is amended by an adequate optimisation. The
results are also evaluated in the light of stability and minimum sensitivity
considerations. Extensions to higher order and further implications are
emphasized.Comment: 15 pages, 2 figures; paragraph after (19), figure 2, and references
adde
Choice in the context of informal care-giving
Extending choice and control for social care service users is a central feature of current English policies. However, these have comparatively little to say about choice in relation to the informal carers of relatives, friends or older people who are disabled or sick. To explore the realities of choice as experienced by carers, the present paper reviews research published in English since 1985 about three situations in which carers are likely to face choices: receiving social services; the entry of an older person to long-term care; and combining paid work and care. Thirteen electronic databases were searched, covering both the health and social care fields. Databases included: ASSIA; IBSS; Social Care Online; ISI Web of Knowledge; Medline; HMIC Sociological Abstracts; INGENTA; ZETOC; and the National Research Register. The search strategy combined terms that: (1) identified individuals with care-giving responsibilities; (2) identified people receiving help and support; and (3) described the process of interest (e.g. choice, decision-making and self-determination). The search identified comparatively few relevant studies, and so was supplemented by the findings from another recent review of empirical research on carers' choices about combining work and care. The research evidence suggests that carers' choices are shaped by two sets of factors: one relates to the nature of the care-giving relationship; and the second consists of wider organisational factors. A number of reasons may explain the invisibility of choice for carers in current policy proposals for increasing choice. In particular, it is suggested that underpinning conceptual models of the relationship between carers and formal service providers shape the extent to which carers can be offered choice and control on similar terms to service users. In particular, the exercise of choice by carers is likely to be highly problematic if it involves relinquishing some unpaid care-giving activities
High pressure diamond-like liquid carbon
We report density-functional based molecular dynamics simulations, that show
that, with increasing pressure, liquid carbon undergoes a gradual
transformation from a liquid with local three-fold coordination to a
'diamond-like' liquid. We demonstrate that this unusual structural change is
well reproduced by an empirical bond order potential with isotropic long range
interactions, supplemented by torsional terms. In contrast, state-of-the-art
short-range bond-order potentials do not reproduce this diamond structure. This
suggests that a correct description of long-range interactions is crucial for a
unified description of the solid and liquid phases of carbon.Comment: 4 pages, 5 figure
- …
