2,018 research outputs found

    The role of asymmetric interactions on the effect of habitat destruction in mutualistic networks

    Get PDF
    Plant-pollinator mutualistic networks are asymmetric in their interactions: specialist plants are pollinated by generalist animals, while generalist plants are pollinated by a broad involving specialists and generalists. It has been suggested that this asymmetric ---or disassortative--- assemblage could play an important role in determining the equal susceptibility of specialist and generalist plants under habitat destruction. At the core of the argument lies the observation that specialist plants, otherwise candidates to extinction, could cope with the disruption thanks to their interaction with generalist pollinators. We present a theoretical framework that supports this thesis. We analyze a dynamical model of a system of mutualistic plants and pollinators, subject to the destruction of their habitat. We analyze and compare two families of interaction topologies, ranging from highly assortative to highly disassortative ones, as well as real pollination networks. We found that several features observed in natural systems are predicted by the mathematical model. First, there is a tendency to increase the asymmetry of the network as a result of the extinctions. Second, an entropy measure of the differential susceptibility to extinction of specialist and generalist species show that they tend to balance when the network is disassortative. Finally, the disappearance of links in the network, as a result of extinctions, shows that specialist plants preserve more connections than the corresponding plants in an assortative system, enabling them to resist the disruption.Comment: 14 pages, 7 figure

    A simulation model of the Devils Hole pupfish population using monthly length-frequency distributions

    Get PDF
    The Devils Hole pupfish, Cyprinodon diabolis, is a federally-endangered fish that is endemic to Devils Hole, a discontiguous part of Death Valley National Park in Nye County, Nevada. Due to its status, Devils Hole pupfish monitoring must be non-obtrusive and thereby exclude techniques that require handling fish. Due to a recent decline in pupfish abundance, Devils Hole pupfish managers have expressed a need for a model that describes population dynamics. This population model would be used to identify vulnerable life history stage(s) and inform management actions. We constructed a set of individualbased simulation models designed to explore effects of population processes and evaluate assumptions. We developed a baseline model, whose output best resembled both observed length-frequency data and predicted intraannual abundance patterns. We then ran simulations with 5 % increases in egg-larval, juvenile, and adult survival rates to better understand Devils Hole pupfish life history, thereby helping identify vulnerable life history stages that should become the target of management actions. Simulation models with temporally constant adult, juvenile, and egg-larval survival rates were able to reproduce observed length-frequency distributions and predicted intra-annual population patterns. In particular, models with monthly adult and juvenile survival rates of 80 % and an egg-larval survival rate of 4.7 % replicated patterns in observed data. Population growth was most affected by 5 % increases in egg-larval survival, whereas adult and juvenile survival rates had similar but lesser effects on population growth. Outputs from the model were used to assess factors suspected of influencing Devils Hole pupfish population decline

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Invasion speeds for structured populations in fluctuating environments

    Get PDF
    We live in a time where climate models predict future increases in environmental variability and biological invasions are becoming increasingly frequent. A key to developing effective responses to biological invasions in increasingly variable environments will be estimates of their rates of spatial spread and the associated uncertainty of these estimates. Using stochastic, stage-structured, integro-difference equation models, we show analytically that invasion speeds are asymptotically normally distributed with a variance that decreases in time. We apply our methods to a simple juvenile-adult model with stochastic variation in reproduction and an illustrative example with published data for the perennial herb, \emph{Calathea ovandensis}. These examples buttressed by additional analysis reveal that increased variability in vital rates simultaneously slow down invasions yet generate greater uncertainty about rates of spatial spread. Moreover, while temporal autocorrelations in vital rates inflate variability in invasion speeds, the effect of these autocorrelations on the average invasion speed can be positive or negative depending on life history traits and how well vital rates ``remember'' the past

    The Atlantic Ocean at the last glacial maximum: 1. Objective mapping of the GLAMAP sea-surface conditions

    Get PDF
    Recent efforts of the German paleoceanographic community have resulted in a unique data set of reconstructed sea-surface temperature for the Atlantic Ocean during the Last Glacial Maximum, plus estimates for the extents of glacial sea ice. Unlike prior attempts, the contributing research groups based their data on a common definition of the Last Glacial Maximum chronozone and used the same modern reference data for calibrating the different transfer techniques. Furthermore, the number of processed sediment cores was vastly increased. Thus the new data is a significant advance not only with respect to quality, but also to quantity. We integrate these new data and provide monthly data sets of global sea-surface temperature and ice cover, objectively interpolated onto a regular 1°x1° grid, suitable for forcing or validating numerical ocean and atmosphere models. This set is compared to an existing subjective interpolation of the same base data, in part by employing an ocean circulation model. For the latter purpose, we reconstruct sea surface salinity from the new temperature data and the available oxygen isotope measurements

    Effects of Sample Size on Estimates of Population Growth Rates Calculated with Matrix Models

    Get PDF
    BACKGROUND: Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. METHODOLOGY/PRINCIPAL FINDINGS: Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. CONCLUSIONS/SIGNIFICANCE: We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities

    Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens

    Get PDF
    The average nitrogen-to-phosphorus ratio (N?P) of insect herbivores is less than that of leaves, suggesting that P may mediate plant-insect interactions more often than appreciated. We investigated whether succession-related heterogeneity in N and P stoichiometry influences herbivore performance on N-fixing lupin (Lupinus lepidus) colonizing primary successional volcanic surfaces, where the abundances of several specialist lepidopteran herbivores are inversely related to lupin density and are known to alter lupin colonization dynamics. We examined larval performance in response to leaf nutritional characteristics using gelechiid and pyralid leaf-tiers, and a noctuid leaf-cutter.Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens. PLoS ONE 4(11): e7807. doi:10.1371/journal.pone.000780

    An early Cambrian agglutinated tubular lophophorate with brachiopod characters.

    Get PDF
    The morphological disparity of lophotrochozoan phyla makes it difficult to predict the morphology of the last common ancestor. Only fossils of stem groups can help discover the morphological transitions that occurred along the roots of these phyla. Here, we describe a tubular fossil Yuganotheca elegans gen. et sp. nov. from the Cambrian (Stage 3) Chengjiang Lagerstätte (Yunnan, China) that exhibits an unusual combination of phoronid, brachiopod and tommotiid (Cambrian problematica) characters, notably a pair of agglutinated valves, enclosing a horseshoe-shaped lophophore, supported by a lower bipartite tubular attachment structure with a long pedicle with coelomic space. The terminal bulb of the pedicle provided anchorage in soft sediment. The discovery has important implications for the early evolution of lophotrochozoans, suggesting rooting of brachiopods into the sessile lophotrochozoans and the origination of their bivalved bauplan preceding the biomineralization of shell valves in crown brachiopods

    Emergent Properties of Patch Shapes Affect Edge Permeability to Animals

    Get PDF
    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance

    Human African Trypanosomiasis in South Sudan: How Can We Prevent a New Epidemic?

    Get PDF
    Human African trypanosomiasis (HAT) has been a major public health problem in South Sudan for the last century. Recurrent outbreaks with a repetitive pattern of responding-scaling down activities have been observed. Control measures for outbreak response were reduced when the prevalence decreased and/or socio-political crisis erupted, leading to a new increase in the number of cases. This paper aims to raise international awareness of the threat of another outbreak of sleeping sickness in South Sudan. It is a review of the available data, interventions over time, and current reports on the status of HAT in South Sudan. Since 2006, control interventions and treatments providing services for sleeping sickness have been reduced. Access to HAT diagnosis and treatment has been considerably diminished. The current status of control activities for HAT in South Sudan could lead to a new outbreak of the disease unless 1) the remaining competent personnel are used to train younger staff to resume surveillance and treatment in the centers where HAT activities have stopped, and 2) control of HAT continues to be given priority even when the number of cases has been substantially reduced. Failure to implement an effective and sustainable system for HAT control and surveillance will increase the risk of a new epidemic. That would cause considerable suffering for the affected population and would be an impediment to the socioeconomic development of South Sudan
    • …
    corecore