284 research outputs found
GPU acceleration of a model-based iterative method for Digital Breast Tomosynthesis
Digital Breast Tomosynthesis (DBT) is a modern 3D Computed Tomography X-ray technique for the early detection of breast tumors, which is receiving growing interest in the medical and scientific community. Since DBT performs incomplete sampling of data, the image reconstruction approaches based on iterative methods are preferable to the classical analytic techniques, such as the Filtered Back Projection algorithm, providing fewer artifacts. In this work, we consider a Model-Based Iterative Reconstruction (MBIR) method well suited to describe the DBT data acquisition process and to include prior information on the reconstructed image. We propose a gradient-based solver named Scaled Gradient Projection (SGP) for the solution of the constrained optimization problem arising in the considered MBIR method. Even if the SGP algorithm exhibits fast convergence, the time required on a serial computer for the reconstruction of a real DBT data set is too long for the clinical needs. In this paper we propose a parallel SGP version designed to perform the most expensive computations of each iteration on Graphics Processing Unit (GPU). We apply the proposed parallel approach on three different GPU boards, with computational performance comparable with that of the boards usually installed in commercial DBT systems. The numerical results show that the proposed GPU-based MBIR method provides accurate reconstructions in a time suitable for clinical trials
Tumor suppressors in chronic lymphocytic leukemia: From lost partners to active targets
Tumor suppressors play an important role in cancer pathogenesis and in the modulation of resistance to treatments. Loss of function of the proteins encoded by tumor suppressors, through genomic inactivation of the gene, disable all the controls that balance growth, survival, and apoptosis, promoting cancer transformation. Parallel to genetic impairments, tumor suppressor products may also be functionally inactivated in the absence of mutations/deletions upon post-transcriptional and post-translational modifications. Because restoring tumor suppressor functions remains the most effective and selective approach to induce apoptosis in cancer, the dissection of mechanisms of tumor suppressor inactivation is advisable in order to further augment targeted strategies. This review will summarize the role of tumor suppressors in chronic lymphocytic leukemia and attempt to describe how tumor suppressors can represent new hopes in our arsenal against chronic lymphocytic leukemia (CLL)
A neuronal network of mitochondrial dynamics regulates metastasis.
The role of mitochondria in cancer is controversial. Using a genome-wide shRNA screen, we now show that tumours reprogram a network of mitochondrial dynamics operative in neurons, including syntaphilin (SNPH), kinesin KIF5B and GTPase Miro1/2 to localize mitochondria to the cortical cytoskeleton and power the membrane machinery of cell movements. When expressed in tumours, SNPH inhibits the speed and distance travelled by individual mitochondria, suppresses organelle dynamics, and blocks chemotaxis and metastasis, in vivo. Tumour progression in humans is associated with downregulation or loss of SNPH, which correlates with shortened patient survival, increased mitochondrial trafficking to the cortical cytoskeleton, greater membrane dynamics and heightened cell invasion. Therefore, a SNPH network regulates metastatic competence and may provide a therapeutic target in cancer
Follicular dynamics, uterine evaluation, and pregnancy rate in Nelore cows treated with prostaglandin and injectable progesterone in early puerperium.
Edição dos resumos da 37ª Annual Meeting of the Brazilian Embryo Technology Society, 2024, Atibaia, SP
DOK2 inhibits EGFR-mutated lung adenocarcinoma
Somatic mutations in the EGFR proto-oncogene occur in ~15% of human lung adenocarcinomas and the importance of EGFR mutations for the initiation and maintenance of lung cancer is well established from mouse models and cancer therapy trials in human lung cancer patients. Recently, we identified DOK2 as a lung adenocarcinoma tumor suppressor gene. Here we show that genomic loss of DOK2 is associated with EGFR mutations in human lung adenocarcinoma, and we hypothesized that loss of DOK2 might therefore cooperate with EGFR mutations to promote lung tumorigenesis. We tested this hypothesis using genetically engineered mouse models and find that loss of Dok2 in the mouse accelerates lung tumorigenesis initiated by oncogenic EGFR, but not that initiated by mutated Kras. Moreover, we find that DOK2 participates in a negative feedback loop that opposes mutated EGFR; EGFR mutation leads to recruitment of DOK2 to EGFR and DOK2-mediated inhibition of downstream activation of RAS. These data identify DOK2 as a tumor suppressor in EGFR-mutant lung adenocarcinoma
po 450 interplay between coding and non coding genome in human parathyroid tumours
Introduction Parathyroid tumours are the second most common endocrine neoplasia in women, after thyroid cancer. Mutations in the oncosuppressor CDC73 are the key event in most carcinomas whereas alterations in the tumour suppressor MEN1 (located at 11q13.1) occur in up to a third of sporadic adenomas. Although lncRNAs play a regulatory role in endocrine cancer pathogenesis, a lncRNAs profiling in human parathyroid tumours is still missing. Here, we identified a 'molecular signature' able to distinguish among parathyroid histotypes and a new potential epigenetic role of MEN1 in lncRNAs regulation. Material and methods Ninety lncRNAs were investigated in 4 parathyroid carcinomas (PCas), 12 adenomas (PAds) and 2 normal glands (PaNs). Hierarchical clustering (HCL) and Significance Analysis of Microarray (SAM) were performed to identify differences in lncRNAs expression. Significant lncRNAs were validated in additional 7 PCas, 26 PAds, 6 atypical PAds (aPAds) and 4 PaNs. CDC73 and MEN1 genes mutations were detected by Sanger sequencing. PAds genomic characterisation was obtained by array Comparative Genomic Hybridization (aCGH). HEK293 cells were transiently silenced for MEN1 expression to analyse MEN1-lncRNAs correlation. Results and discussions Nine lncRNAs were identified as differentially expressed in parathyroid tissues. Specifically, KCNQ1OT1 and SNHG6 were enriched in PaNs, reduced HAR1B, MEG3, HOXA3as and NEAT1 expression characterised PAds, whereas BC200, HOXA6as and WT1-AS were upregulated in PCas. HCL identified 3 clusters in which PaNs and PCas were distinctly separated, while aPAds were closer to PCas. Moreover, PAds clustered in a highly heterogeneous way. Notably, PCas and aPAds harbouring CDC73-mutations overexpressed the majority of the lncRNAs, compared to CDC73 wild-type samples. Interestingly, BACE1-AS, KCNQ1OT1, NEAT1 and SNHG6 levels in PAds were positively correlated with MEN1 levels. aCGH analysis revealed that Chr11 loss of heterozygosity (LOH) was the main chromosomal aberration in PAds. Of note, Chr11 LOH was associated with significant HAR1B upregulation and these data were confirmed in HEK293 cells knocked-down for MEN1. Conclusion Parathyroid histotypes are characterised by different lncRNAs signatures, suggesting a correlation with tumour aggressiveness and pathogenetic mechanisms. Further, our data highlight that lncRNAs profiles are related to CDC73 gene mutation status, chromosome 11 derangements and MEN1 inactivation
History of migraine and volume of brain infarcts: The italian project on stroke at young age (IPSYS)
BACKGROUND AND PURPOSE: Migraine has been shown to increase cerebral excitability, promote rapid infarct expansion into tissue with perfusion deficits, and result in larger infarcts in animal models of focal cerebral ischemia. Whether these effects occur in humans has never been properly investigated. METHODS: In a series of consecutive patients with acute ischemic stroke, enrolled in the setting of the Italian Project on Stroke at Young Age, we assessed acute as well as chronic infarct volumes by volumetric magnetic resonance imaging, and compared these among different subgroups identified by migraine status. RESULTS: A cohort of 591 patients (male, 53.8%; mean age, 37.5±6.4 years) qualified for the analysis. Migraineurs had larger acute infarcts than non-migraineurs (median, 5.9 cm3 [interquartile range (IQR), 1.4 to 15.5] vs. 2.6 cm3 [IQR, 0.8 to 10.1], P<0.001), and the largest volumes were observed in patients with migraine with aura (median, 9.0 cm3 [IQR, 3.4 to 16.6]). In a linear regression model, migraine was an independent predictor of increased log (acute infarct volumes) (median ratio [MR], 1.64; 95% confidence interval [CI], 1.22 to 2.20), an effect that was more prominent for migraine with aura (MR, 2.92; 95% CI, 1.88 to 4.54). CONCLUSION: s These findings reinforce the experimental observation of larger acute cerebral infarcts in migraineurs, extend animal data to human disease, and support the hypothesis of increased vulnerability to ischemic brain injury in people suffering migraine
PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function.
Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rβ-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential
- …