352 research outputs found

    Modeling the growth of multicellular cancer spheroids in a\ud bioengineered 3D microenvironment and their treatment with an\ud anti-cancer drug

    Get PDF
    A critical step in the dissemination of ovarian cancer cells is the formation of multicellular spheroids from cells shed from the primary tumor. The objectives of this study were to establish and validate bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer cells in vitro and simultaneously to develop computational models describing the growth of multicellular spheroids in these bioengineered matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and cultured for up to 4 weeks. Immunohistochemistry was used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel.\ud \ud Two computational models were developed. In the first model, each spheroid was treated as an incompressible porous medium, whereas in the second model the concept of morphoelasticity was used to incorporate details about internal stresses and strains. Each model was formulated as a free boundary problem. Functional forms for cell proliferation and apoptosis motivated by the experimental work were applied and the predictions of both models compared with the output from the experiments. Both models simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture time and treatment with paclitaxel. Our mathematical models provide new perspectives on previous experimental results and have informed the design of new 3D studies of multicellular cancer spheroids

    Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach

    Get PDF
    We have integrated a bioengineered three-dimensional platform by generating multicellular cancer spheroids in a controlled microenvironment with a mathematical model to investigate\ud confined tumour growth and to model its impact on cellular processes

    Sixty-five foot diameter DGB parachute planetary entry parachute program Design report

    Get PDF
    Structural design and component test data for disk gap-band planetary entry parachut

    Asymptotic analysis of the dominant mechanisms in the coffee extraction process

    Get PDF
    peer-reviewedExtraction of coffee solubles from roast and ground coffee is a highly complex process, depending on a large number of brewing parameters. We consider a recent, experimentally validated, model of coffee extraction, describing extraction from a coffee bed using a double porosity model, which includes dissolution and transport of coffee. It was shown that this model can accurately describe coffee extraction in two situations: extraction from a dilute suspension of coffee grains and extraction from a packed coffee bed. Despite being based on some simplifying assumptions, this model can only be solved numerically. In this paper we consider asymptotic solutions of the model describing extraction from a packed coffee bed. Such solutions can explicitly relate coffee concentration to the process parameters. For an individual coffee grain, extraction is controlled by a rapid dissolution of coffee from the surface of the grain, in conjunction with a slower diffusion of coffee through the intragranular pore network to the grain surface. Extraction of coffee from the bed also depends on the speed of advection of coffee from the bed. We utilize the small parameter resulting from the ratio of the advection timescale to the grain diffusion timescale to construct asymptotic solutions using the method of matched asymptotic expansions. The asymptotic solutions are compared to numerical solutions and data from coffee extraction experiments. The asymptotic solutions depend on a small number of dimensionless parameters and so are useful to quickly fit extraction curves and investigate the influence of various process parameters on the extraction.PUBLISHEDpeer-reviewe

    Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    Get PDF
    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC¿MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function SPE sorbents was tested. Polymeric sorbents were found to retain most of the toxins. Optimization experiments were carried out to maximize recoveries and the effectiveness of the clean-up. In LC¿MS/MS analysis, the observed matrix effects can depend on the chromatographic conditions used, therefore, two different HPLC methods were tested, using either an acidic or an alkaline mobile phase. The recovery of the optimized SPE protocol was around 90% for all toxins studied and no break-through was observed. The matrix effects were determined by comparing signal response from toxins spiked in crude and SPE-cleaned extracts with those derived from toxins prepared in methanol. In crude extracts, all toxins suffered from matrix effects, although in varying amounts. The most serious effects were observed for okadaic acid (OA) and pectenotoxin-2 (PTX2) in the positive electrospray ionization mode (ESI+). SPE clean-up on polymeric sorbents in combination with the alkaline LC method resulted in a substantial reduction of matrix effects to less than 15% (apparent recovery between 85 and 115%) for OA, yessotoxin (YTX) in ESI¿ and azaspiracid-1 (AZA1), PTX2, 13-desmethyl spirolides C (SPX1), and gymnodimine (GYM) in ESI+. In combination with the acidic LC method, the matrix effects after SPE were also reduced but nevertheless approximately 30% of the matrix effects remained for PTX2, SPX1, and GYM in ESI+. It was concluded that SPE of methanolic shellfish extracts can be very useful for reduction of matrix effects. However, the type of LC and MS methods used is also of great importance. SPE on polymeric sorbents in combination with LC under alkaline conditions was found the most effective method

    Spatial Dynamics Of Vertical And Horizontal Intergovernmental Collaboration

    Full text link
    Although researchers have made progress in understanding motivations behind local government collaboration, there is little research that explores the spatial dynamics of such interactions. Does the idea of collaboration travel horizontally, passed from neighbor to neighbor, or is vertical leadership from state, county, or regional actors more important in influencing local governments’ decisions to share resources and functions? What factors influence local governments’ choices to collaborate with their neighbors versus a regional entity, county, or state government? In this article, we investigate the importance of vertical and horizontal influences when local governments decide to collaborate around land use planning. Using data from a survey of Michigan local government officials, we take a spatial statistical approach to answering this question. We find widespread evidence of collaboration at multiple scales, and observe patterns of both horizontal and vertical influence. We also find that contextual factors help to explain these patterns of collaboration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112248/1/juaf12139.pd

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    NICE : A Computational solution to close the gap from colour perception to colour categorization

    Get PDF
    The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms
    • …
    corecore