93 research outputs found

    Transcriptional responses of PBMC in psychosocially stressed animals indicate an alerting of the immune system in female but not castrated male pigs

    Get PDF
    Background[br/] Brain and immune system are linked in a bi-directional manner. To date, it remained largely unknown why immune components become suppressed, enhanced, or remain unaffected in relation to psychosocial stress. Therefore, we mixed unfamiliar pigs with different levels of aggressiveness. We separated castrated male and female pigs into psychosocially high- and low- stressed animals by skin lesions, plasma cortisol level, and creatine kinase activity obtained from agonistic behaviour associated with regrouping. Peripheral blood mononuclear cells (PBMC) were collected post-mortem and differential gene expression was assessed using the Affymetrix platform (n = 16).[br/] [br/] Results[br/] Relevant stress-dependent alterations were found only between female samples, but not between castrated male samples. Molecular routes related to TREM 1 signalling, dendritic cell maturation, IL-6 signalling, Toll-like receptor signalling, and IL-8 signalling were increased in high stressed females compared to low stressed females. This indicates a launch of immune effector molecules as a direct response. According to the shifts of transcripts encoding cell surface receptors (e.g. CD14, TLR2, TLR4, TREM1) the study highlights processes acting on pattern recognition, inflammation, and cell-cell communication.[br/] [br/] Conclusions[br/] The transcriptional response partly affected the degree of ‘stress responsiveness’, indicating that the high stressed females altered their signal transduction due to potential infections and injuries while fighting

    Review: Transport Losses in Market Weight Pigs: I. A Review of Definitions, Incidence, and Economic Impact

    Get PDF
    Transport losses (dead and nonambulatory pigs) present animal welfare, legal, and economic challenges to the US swine industry. The objectives of this review are to explore 1) the historical perspective of transport losses; 2) the incidence and economic implications of transport losses; and 3) the symptoms and metabolic characteristics of fatigued pigs. In 1933 and 1934, the incidence of dead and nonambulatory pigs was reported to be 0.08 and 0.16%, respectively. More recently, 23 commercial field trials (n = 6,660,569 pigs) were summarized and the frequency of dead pigs, nonambulatory pigs, and total transport losses at the processing plant were 0.25, 0.44, and 0.69% respectively. In 2006, total economic losses associated with these transport losses were estimated to cost the US pork industry approximately $46 million. Furthermore, 0.37 and 0.05% of the nonambulatory pigs were classified as either fatigued (nonambulatory, noninjured) or injured, respectively, in 18 of these trials (n = 4,966,419 pigs). Fatigued pigs display signs of acute stress (open-mouth breathing, skin discoloration, muscle tremors) and are in a metabolic state of acidosis, characterized by low blood pH and high blood lactate concentrations; however, the majority of fatigued pigs will recover with rest. Transport losses are a multifactorial problem consisting of people, pig, facility design, management, transportation, processing plant, and environmental factors, and, because of these multiple factors, continued research efforts are needed to understand how each of the factors and the relationships among factors affect the well-being of the pig during the marketing process

    Social Isolation-Induced Aggression Potentiates Anxiety and Depressive-Like Behavior in Male Mice Subjected to Unpredictable Chronic Mild Stress

    Get PDF
    Accumulating epidemiological evidence shows that life event stressors are major vulnerability factors for psychiatric diseases such as major depression. It is also well known that social isolation in male mice results in aggressive behavior. However, it is not known how social isolation-induced aggression affects anxiety and depressive-like behavior in isolated male mice subjected to unpredictable chronic mild stress (CMS), an animal model of depression.C57/B6 male mice were divided into 3 groups; non-stressed controls, in Group I; isolated mice subjected to the CMS protocol in Group II and aggression by physical contact in socially isolated mice subjected to the CMS protocol in Group III. In the sucrose intake test, ingestion of a 1% sucrose solution by mice in Groups II and III was significantly lower than in Group I. Furthermore, intake of this solution in Group III mice was significantly lower than in Group II mice. In the open field test, mice in Group III, showed reduced locomotor activity and reduced entry and retention time in the central zone, compared to Groups I and II mice. Moreover, the distances moved in 1 hour by Group III mice did not differ between night and morning. In the light/black box test, Groups II and III animals spent significantly less time in the light box compared to Group I animals. In the tail suspension test (TST) and forced swimming test (FST), the immobility times of Group II and Group III mice were significantly longer than in Group I mice. In addition, immobility times in the FST were significantly longer in Group III than in Group II mice.These findings show that social isolation-induced aggression could potentiate anxiety and depressive-like behaviors in isolated male mice subjected to CMS

    Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context

    Get PDF
    Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public. In a context in which animal and human health are intertwined aspects of the one-health concept it is of utmost importance to define the markers of stress and welfare. These are important tools for producers, retailers, regulatory agents and ultimately consumers to effectively monitor and assess the welfare state of production animals. Proteomics is the science that studies the proteins existing in a given tissue or fluid. In this review we address this topic by showing clear examples where proteomics has been used to study stress-induced changes at various levels. We adopt a multi-species (cattle, swine, small ruminants, poultry, fish and shellfish) approach under the effect of various stress inducers (handling, transport, management, nutritional, thermal and exposure to pollutants) clearly demonstrating how proteomics and systems biology are key elements to the study of stress and welfare in farm animals and powerful tools for animal welfare, health and productivity
    • …
    corecore