214 research outputs found

    On the robustness of the average power ratios in damping estimation: application in the structural health monitoring of composites beams

    Get PDF
    In composites structures, cracking, delamination will cause changes in the measured dynamic response of structure and so on experimentally modal parameters. Estimation of damping in structural control often poses a difficult problem especially using broadband experiments. If these estimations are faulty, it is difficult to propose a robust Structural Health Monitoring (SHM) algorithm. Recently H.P. Yin introduced the optimal power ratios damping estimator. A new theoretical basis of the bandwidth method for the damping estimation from frequency response functions (in case of a single degree of freedom system) has been proposed. The main goal of this paper is to study the robustness of this enhanced damping estimator on simulated signal (sampling frequency, Signal to Noise Ratio and damping level/density), and also compare its performance with industrial improved estimator like “Polymax” on experimental Frequency Response Functions (FRFs). The pole shifts would be studied as a change in the frequency-damping plane function of level and density of damage

    New image processing tools for structural dynamic monitoring

    Get PDF
    This paper presents an introduction to structural damage assessment using image processing on real data (non ideal conditions). Our contribution is much more a groundwork than a classical experimental validation. After measuring the bridge dynamic parameter on a small resolution video, we conjointly present advantages and limitations of our method. Finally we introduce several "computer vision" based rules and focus on the technical ability to detect damage using camera and video motion estimation

    A new SSI algorithm for LPTV systems: Application to a hinged-bladed helicopter

    Get PDF
    Many systems such as turbo-generators, wind turbines and helicopters show intrinsic time-periodic behaviors. Usually, these structures are considered to be faithfully modeled as linear time-invariant (LTI). In some cases where the rotor is anisotropic, this modeling does not hold and the equations of motion lead necessarily to a linear periodically time- varying (referred to as LPTV in the control and digital signal field or LTP in the mechanical and nonlinear dynamics world) model. Classical modal analysis methodologies based on the classical time-invariant eigenstructure (frequencies and damping ratios) of the system no more apply. This is the case in particular for subspace methods. For such time-periodic systems, the modal analysis can be described by characteristic exponents called Floquet multipliers. The aim of this paper is to suggest a new subspace-based algorithm that is able to extract these multipliers and the corresponding frequencies and damping ratios. The algorithm is then tested on a numerical model of a hinged-bladed helicopter on the ground

    Development of a dynamic virtual reality model of the inner ear sensory system as a learning and demonstrating tool

    Get PDF
    In order to keep track of the position and motion of our body in space, nature has given us a fascinating and very ingenious organ, the inner ear. Each inner ear includes five biological sensors - three angular and two linear accelerometers - which provide the body with the ability to sense angular and linear motion of the head with respect to inertial space. The aim of this paper is to present a dynamic virtual reality model of these sensors. This model, implemented in Matlab/Simulink, simulates the rotary chair testing which is one of the tests carried out during a diagnosis of the vestibular system. High-quality 3D-animations linked to the Simulink model are created using the export of CAD models into Virtual Reality Modeling Language (VRML) files. This virtual environment shows not only the test but also the state of each sensor (excited or inhibited) in real time. Virtual reality is used as a tool of integrated learning of the dynamic behavior of the inner ear using ergonomic paradigm of user interactivity (zoom, rotation, mouse interaction,…). It can be used as a learning and demonstrating tool either in the medicine field - to understand the behavior of the sensors during any kind of motion - or in the aeronautical field to relate the inner ear functioning to some sensory illusions

    A CUSUM test with sliding reference for ground resonance monitoring

    Get PDF
    Ground resonance is potentially destructive oscillations that may develop on helicopters rotors when the aircraft is on or near the ground. Therefore, this unstable phenomenon has to be detected before it occurs in order to be avoided by the pilot. To predict the zones of instability, works have generally relayed on off-line modal analysis of the helicopter model. Unfortunately, this off-line analysis is not sufficiently reliable. The subspace-based cumulative sum CUSUM test, able of on-line monitoring, is a good alternative which permits - at once- to avoid the system identification for each flight point and to have more robust detection, with reduced costs. In this paper, we describe an alternative test- with a moving reference this time- in order to kill wrong alarms or premature responses that are observed for fixed-reference tests. Numerical results reported herein are driven from simulation data

    Modeshapes recognition using Fourier descriptors: a simple SHM example

    Get PDF
    The main objective of this study is to develop an alternative criterion for modeshape classification, as the currently available one, MAC (Modal Assurance Criteria), is only a vector correlation representing modeshape similarities. This new method is developed to provide a set of features (Fourier Descriptors) for comparing modeshapes with “local” similarities of higher interest than “global” similarities using nodal lines. These lines are able to characterize modeshapes very easily. So when damage occurs, we are able to track the few descriptors changes to localise the damage. We validated our method on a CFCF plate demonstrating the quality of the damage localisation and possible use in a “mode tracking” application (space structure)

    Damage monitoring in sandwich beams by modal parameter shifts: a comparative study of burst random and sine dwell vibration testing

    Get PDF
    This paper presents an experimental study on the effects of multi-site damage on the vibration response of honeycomb sandwich beams, damaged by two different ways i.e., impact damage and core-only damage simulating damage due to bird or stone impact or due to mishandling during assembly and maintenance. The variation of the modal parameters with different levels of impact energy and density of damage is studied. Vibration tests have been carried out with both burst random and sine dwell testing in order to evaluate the damping estimation efficiency of these methods in the presence of damage. Sine dwell testing is done in both up and down frequency directions in order to detect structural non-linearities. Results show that damping ratio is a more sensitive parameter for damage detection than the natural frequency. Design of experiments (DOE) highlighted density of damage as the factor having a more significant effect on the modal parameters and also proved that sine dwell testing is more suitable for damping estimation in the presence of damage as compared to burst random testing

    Damage localization using experimental modal parameters and topology optimization

    Get PDF
    This work focuses on the developement of a damage detection and localization tool using the Topology Optimization feature of MSC.Nastran. This approach is based on the correlation of a local stiness loss and the change in modal parameters due to damages in structures. The loss in stiness is accounted by the Topology Optimization approach for updating undamaged numerical models towards similar models with embedded damages. Hereby, only a mass penalization and the changes in experimentally obtained modal parameters are used as objectives. The theoretical background for the implementation of this method is derived and programmed in a Nastran input file and the general feasibility of the approach is validated numerically, as well as experimentally by updating a model of an experimentally tested composite laminate specimen. The damages have been introduced to the specimen by controlled low energy impacts and high quality vibration tests have been conducted on the specimen for dierent levels of damage. These supervised experiments allow to test the numerical diagnosis tool by comparing the result with both NDT technics and results of previous works (concerning shifts in modal parameters due to damage). Good results have finally been archieved for the localization of the damages by the Topology Optimization

    Harmonic response of the organ of corti: results for wave dispersion

    Get PDF
    Inner ear is a remarkable multiphysical system and its modelling is a great challenge. The approach used in this paper aims to reproduce physic with a realistic description of the radial cross section of the cochlea. A 2D‐section of the organ of Corti is fully described. Wavenumbers and corresponding modes of propagation are calculated taking into account passive structural responses. The study is extended to six cross sections of the organ of Corti and a large frequency bandwidth from 100 Hz to 3 kHz. Dispersion curves reveal the influence of fluid structure interactions with a dispersive behavior at high frequencies. Longitudinal mechanical coupling provides new interacting modes of propagation

    Correlating low energy impact damage with changes in modal parameters: diagnosis tools and FE validation

    Get PDF
    This paper presents a basic experimental technique and simplified FE based models for the detection, localization and quantification of impact damage in composite beams around the BVID level. Detection of damage is carried out by shift in modal parameters. Localization of damage is done by a topology optimization tool which showed that correct damage locations can be found rather efficiently for low-level damage. The novelty of this paper is that we develop an All In One (AIO) package dedicated to impact identification by modal analysis. The damaged zones in the FE models are updated by reducing the most sensitive material property in order to improve the experimental/numerical correlation of the frequency response functions. These approximate damage models(in term of equivalent rigidity) give us a simple degradation factor that can serve as a warning regarding structure safety
    corecore