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Abstract 

In order to keep track of the position and motion of our body in space, nature has given us a 

fascinating and very ingenious organ, the inner ear. Each inner ear includes five biological sensors - 

three angular and two linear accelerometers - which provide the body with the ability to sense angular 

and linear motion of the head with respect to inertial space. The aim of this paper is to present a 

dynamic virtual reality model of these sensors. This model, implemented in Matlab/Simulink, 

simulates the rotary chair testing which is one of the tests carried out during a diagnosis of the 

vestibular system. High-quality 3D-animations linked to the Simulink model are created using the 

export of CAD models into Virtual Reality Modeling Language (VRML) files.  This virtual 

environment shows not only the test but also the state of each sensor (excited or inhibited) in real time. 

Virtual reality is used as a tool of integrated learning of the dynamic behavior of the inner ear using 

ergonomic paradigm of user interactivity (zoom, rotation, mouse interaction,…). It can be used as a 

learning and demonstrating tool either in the medicine field - to understand the behavior of the sensors 

during any kind of motion - or in the aeronautical field to relate the inner ear functioning to some 

sensory illusions.  

Keywords: Virtual reality, dynamic simulation modelling, application of biomechanics, inner ear. 
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1. Introduction 

The vestibular apparatus is located in the inner ear and is vital for our dynamic equilibrium. It 

constitutes a three dimensional inertial-guidance system. Since the 1950s, the advent of aerospace 

flight with its new demands has accelerated the pace of vestibular research. Furthermore, a full 

understanding of the mechanics of a healthy inner ear may contribute to the diagnosis and treatment of 

the vestibular part in a diseased state. This is the reason why several authors have studied the 

mechanics of the semicircular canals which detect changes in angular acceleration, and the otolith 

organs (the utricle and saccule) which are known to sense changes in linear acceleration and gravity. 

The first model regarding the canals was proposed by W. Steinhausen [1] and is known as the classical 

torsion pendulum system, which has been the benchmark for subsequent works (Groen [2], Van 

Egmond [3], Njeugna [4], Fernandez [5]). Since Steinhausen, several models have been established, 

including, perhaps most effectively, the Navier-Stokes equations (Oman [6], Rabbit [7], Steer [8], Van 

Buskirk [9]). Concerning the otolith organs, the works of Grant and Kondrachuk should be mentioned 

[10, 11, 12, 13]. All these models lead to a transfer function between the output of each sensor and the 

angular/linear acceleration of the head with respect to an inertial space.  

The scope of this paper is to design a dynamic virtual reality model, which simulates the inner ear 

sensory system. This numerical model takes into account not only the angular sensors (semicircular 

canals) but also the linear sensors (otolith organs). Furthemore, a Graphical User Interface (GUI) has 

been developed in order to simplify the use of this model. This modeling is linked to a virtual reality 

world in order to see the theoretical state of each sensor during any motion. Therefore, it offers the 

possibility to get a better overall understanding of the vestibular apparatus. Indeed, simulation using 

virtual reality tools affords flexible and versatile tools to improve learning, data gathering and 

analysis. 

This model simulates the rotary chair test which is one of the procedures usually performed by 

specialists during a diagnosis of the vestibular system; this will be explained in-depth later in this 

paper. To perform this numerically, the model follows different steps. First, it resolves the motion 

equations in each coordinate system. Second, it computes the angular acceleration vectors projected on 
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the perpendicular of each canal plane and the linear acceleration vectors projected on the surface of the 

otolith organs. Third, the displacement of each sensor is derived using their transfer function (see 

paragraph 3). Finally, these data, which constitute the inputs of the virtual scene, are transferred to the 

virtual model. 

2. Anatomy and Physiology 

The "balance system" is a reflex system that allows us to maintain awareness of our spatial orientation 

at all times, and makes us react to it. Without it, we shall not be capable to walk upright or follow 

objects with our eyes when we are moving. For purposes of illustration, we will think of the balance 

system as a "black box", with inputs and outputs (Figure 1). This system has 3 categories of sensory 

inputs to provide spatial orientation cues: visual, somatosensory – of which sensory receptors cover 

the skin, muscles, bones and joint to produce the sensory modalities such as touch and proprioception - 

and vestibular. The developed model in the present paper is devoted to the latter component, i.e the 

vestibular part.  

The vestibular system is located within the temporal region of the skull (in the inner ear) and consists 

of two specialized types of sensory systems: the semicircular canals - which respond to angular 

acceleration, and two otolith organs - which primarily detect changes in linear acceleration and gravity 

(Roman [14], Sauvage  [15]). These sensory systems consist of fluid-coupled structures that induce a 

motion-sensitive signal on the vestibular nerve. This signal is then transmitted to the nervous central 

system where other afferent systems such as vision and proprioception also converge for spatial 

orientation, postural stability and gaze stabilization. 

Anatomically, the semicircular canals consist bilaterally of three sets of membranous ducts suspended 

in a fluid called perilymph, and are oriented in almost mutually orthogonal planes (Figure 2). The 

membranous structure is filled with another Newtonian incompressible fluid called endolymph (Steer 

[8]). Each canal contains a gelatinous membrane known as the cupula that completely seals the 

semicircular canals (Hillman [16]). Angular motion sensation relies on inertial forces, caused by head 

accelerations, to generate endolymph fluid flow within the toroidal semicircular canals. More 

precisely, when the head rotates, the endolymph in the canals lags behind due to its inertia and 
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produces a force across the cupula, deflecting it in the opposite direction of head movement. That 

deflection causes a sensation of motion. At a constant rotation rate, the endolymph in the canals tends 

to catch up with the rotation of the head due to the viscosity, eliminating the relative movement. 

Eventually, as long as the rotation rate remains constant, the cupula returns to a vertical position due to 

its elastic properties and the sensation of motion eventually ceases.  Because of the imperfect 

orthogonality of the three canals, each canal can be stimulated by any rotation. However, it has been 

shown that each canal admits a specific direction of stimulation, which maximizes the excitation 

(Rabbit [17]). 

Concerning the otolith organs, they are approximately perpendicular to each other. They are flat 

layered structures. The top layer consists of calcium carbonate crystals (called otoconia), the middle 

layer consists of a gel structure, and the bottom layer is referred to as the sensory base containing 

receptor cells. The otoconia have a density of 2.71g/cm3 whereas the gel layer consists of a highly 

deformable viscoelastic gel having a density of 1.0g/cm3. Consequently, during linear accelerations of 

the head, the inertia of the dense otoconial layer gives rise to relative displacement between it and the 

sensory base, which generates a stimulus (Figure 3).  

 

3. Macromechanical model of the sensors 

3.1 Single semicircular canal 

Angular motion sensation relies on inertial forces, caused by head accelerations, to generate 

endolymph fluid flow within the toroidal semicircular canals. This fluid flow is described by the 

torsion pendulum model, which arises from the works of Steinhausen [1], Groen [2] and Rabbit [7]. It 

describes the semicircular canals as a second-order overdamped system governed by the equation (1):  

 
²

²

d Q dQ
m c kQ f

dt dt
+ + =  (1) 

where Q is the endolymph volume displacement. The term m represents the mass of the fluid 

contained in the canal, c describes the viscous damping appearing in the duct, and k defines the 

stiffness of the cupula which behaves as a restoring spring against the direction of fluid displacement. 
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f  is an inertial forcing term [7]. In this model the membranous semicircular canal is represented as a 

rigid-walled structure, its stiffness being largely higher than the stiffness of the cupula. The cupula is 

also known as a quasi-incompressible gel with a Poisson ratio close to 0.48-0.49. Therefore, the 

cupula volume displacement can be approximated by the endolymph volume displacement. 

The equation (1) is transformed to Laplace domain to obtain the transfer function F(s) defined in 

equation (2) between the cupula volume displacement cQ  and the angular head velocity Ωɺ  : 

    
1 2

( / )
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                    (2) 

As the system is highly overdamped, the two time constants are approximated by 
1

1 k

cτ
≈  and 

2

1 c

mτ
≈ . The values used in this model directly depend on the morphology of the canal and the 

physical properties of the fluid and the cupula (Appendix 1).  

 

3.2 Otolith organ 

The otolith organs are dynamic as well as static sensors. Due to the density differences within their 

structure, any linear acceleration of the head due to linear translation or to a change of the orientation 

of the head with respect to gravity displaces the otoliths and generates a stimulus. By applying 

Newton’s second law of motion within the otoconial plane and then using Laplace transform, the 

transfer function between the otoconial layer displacement and the gravitoinertial acceleration is 

obtained : 
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with 0m  the mass of the otoconial layer,0k  and 0c  are respectively the stiffness and the viscosity of 

the gel membrane supporting the otoconial layer. The system response is overdamped. The two time 
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constants are approximated by  0
1

0

τ ≈oto
c

k
 and 0

2
0

τ ≈oto
m

c
 with 1 120τ ≃oto ms and 2 4τ ≃oto µs(Grant 

[18, 19]). 

 

4. Enhanced formulation of the kinematics problem 

The objective of this model is to simulate a real case of vestibular diagnosis carried out by a specialist. 

It takes into account the non-orthogonal coordinate system attached to the semicircular canals and the 

presence of the otolith organs.  Figure 4(a) illustrates the procedure usually used. The patient is 

strapped into a rotary chair. Due to this rotational movement and the inertia of the endolymph, the 

cupula inside the canal perpendicular to the axis of rotation is deflected. A perception of rotation 

results (Figure 4c). Furthermore, due to the distance of the inner ears from the axis of rotation, the 

components of normal and tangential acceleration stimulate the otolith organs. In addition, the patient 

can be made to undergo several head movements in order to stimulate others sensors. 

In this first model the canals are assumed totally uncoupled, i.e. there are no fluid flow interactions 

between them. That means a canal is stimulated if the component of the rotation vector along the 

perpendicular of this canal is non null. The different coordinate frames are defined in Figure 4(b). 

The angular acceleration between the two frames R2 et R0 is defined by:  

2 / 0 2 /1 1/ 0ω ω ω= +� � �ɺ ɺ ɺ           (4) 

The chair rotates at a constant velocity, which means 1/ 0ω�ɺ is null. The differentiation in R0 leads to the 

expression of the angular acceleration:  

  
0

2 / 0 2 /1 1/ 0 2 /1R
ω ω ω ω= + ∧� � � �ɺ ɺ           (5) 

where 2 /1ω�ɺ  is the angular acceleration of the head relative to the chair expressed in R2,  1/ 0ω�  and 

2 /1ω�  are respectively the angular velocities of the chair in R0 and the angular velocity of the head in 

R2. 

The general expression of head angular velocity relatively to the chair is: 2/1 2 2 2X Y Zω α β γ= + +
� � ��

ɺɺ ɺ . The 

movements of the head are separated into three non-simultaneous distinct motions: case 1 is a rotation 
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around the axis 2Z
�

, case 2 is a rotation around 2Y
�

 and case 3 around 2X
�

. For each case, the 

acceleration of the point B is calculated. Its general expression is:  

( )
2 / 0 2 /1 2 /1, , 1/ 0 1/ 0 1/ 0 1/ 0 ,2B B BA A AB AB Vω ω ω ω= + ∧ + ∧ ∧ + ∧

���� ����� � �� � � �ɺ        (6) 

This expression describes linear acceleration in a rotating environment where the term 

2 /11/ 0 ,2 BVω ∧
��

is the Coriolis acceleration. (See table 1 for the expression of the head angular velocity 

and the acceleration of the origin of the coordinate frame R3). 

 

5. Model implementation 

5.1 Simulink model 

The global functioning of the Simulink model taking into account the inputs (motion of the rotary 

chair + head movements) and the sate of each sensor is explained in the schematic diagram (Figure 5). 

The motions undertaken by an actual patient are integrated into the virtual modeling system. As soon 

as the simulation is started, equations of motion are solved in each coordinate system by using the 

various blocksets available in Matlab/Simulink [20]. Finally, the state of each sensor in real time is 

derived according to their transfer function. The implementation of the simulation parameters is easily 

carried out by using the GUI, which is linked to the Simulink model (Figure 6).   

These parameters define the rotation of the chair (constant, trapezoidal or sinusoidal motion), the head 

movements of the subject, and exterior linear accelerations such as translation motion or gravity. For 

clarity purpose, the head movements are named (Figure 7): 

- pitch movement, for a head tilt toward the shoulders, 

- roll movement, for a downward or upward head rotation, 

- yaw movement, for a head rotation to the left or to the right. 

 For instance the parameters of the model are the angular velocity of the chair, the time to reach this 

value, the magnitudes of the rotating movements of the head, six instants giving the starting signal of 

each head movement, the distance of the origin of R3 from the axis of rotation, etc. 
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The model takes into account a coordinate frame attached to the canals. Indeed, it is important to 

determine the components of the angular acceleration vectors in this coordinate system as it permits to 

know whether each canal is stimulated or not. It is constructed by using experimental Euler angles 

which define the perpendicular of each canal plane ae
�

, le
�

, pe
�

 (anterior, lateral and posterior 

respectively), i.e their orientation in a 3D space relatively to the head coordinate frame. These Euler 

angles were determined by several authors and more recently by Della Santina [21]. They are 

summarized in table 2. 

These values clearly show that the canals do not define an orthogonal coordinate system. In physical 

sense that means if the head turn around a perpendicular axis of one canal, not only this canal but the 

others will be stimulated as well. So we can conclude that for any rotation of the head all the angular 

sensors should provide a stimulus. However, it is important to note that each canal admits a specific 

direction of stimulation that maximizes the excitation: the lateral, anterior and posterior canals 

primarily sense yaw, roll and pitch respectively. The component of any vector is defined in coordinate 

system R3 with the transformation matrix: 

a a a a a

p p p p p

l l l l l

c c c s s

M M M M c s c c s

c s s c c
ϕ θ ψ

θ ψ θ ψ θ
ϕ ψ ϕ ψ ϕ
ϕ θ ϕ ϕ θ

− 
 = = − 
 − 

 with cosc = , sins = . 

5.2. Virtual Reality model 

A numerical demonstrating tool is developed to get a better understanding of the behavior of the inner 

ear for any kind of head motion. A potential application of this digital mock-up could be the 

improvement of the existing clinical test or the development of new ones.  A graphical user interface 

has been programmed in order to simplify the use of the model, the implementation of the simulation 

parameters, and the analysis of the results (curves plot, 3D animation, virtual reality). Furthermore a 

virtual reality world is linked to the kinematics and vestibular model using the virtual reality toolbox 

available in Matlab [22]. This toolbox represents an interface between Matlab and Simulink data on 

one hand, and virtual reality graphics one the other hand. Virtual reality graphics are based on VRML, 

an open standard for describing 3-D scenes [23, 24]. Virtual Reality Toolbox has been successfully 

used in multiple applications for visualizing results of  Simulink simulations. However, it has been 
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observed that system and control engineers who are unfamiliar with VRML find it difficult to create a 

VRML file describing a 3-D scene they would like to visualize. The solution to simplify the VRML 

file creation process is to start the design with CAD assemblies. In this modeling, the different parts of 

the virtual world are created using Solidworks (CAD software), which is very useful for specifying 

detailed three-dimensional design of a component [25]. The CAD models are then exported into 

Virtual Reality Modeling Language (VRML) files. The final virtual environment is created using the 

“V-Realm Builder” software where the VRML files are imported. In order to simulate the dynamics of 

the system, the CAD-to-SimMechanics translator from the MathWorks is used [26, 27]. It enables to 

translate CAD assemblies from a CAD platform into a Physical Modeling XML file compatible with 

SimMechanics. Then, a SimMechanics block diagram model is generated from this file to simulate the 

dynamics of the CAD assembly in the Simulink environment. In order to achieve this, Simulink and 

SimMechanics use a block diagram approach to model control systems around mechanical devices and 

simulate their dynamics. The block diagram approach does not include full geometric information, nor 

do CAD assemblies typically incorporate controllers or allow to perform dynamic simulations. Using 

this technique of CAD translation, the power of CAD and SimMechanics are combined. 

Finally, this Simulink model is connected to the virtual scene in order to create a realistic high-quality 

animation. The outputs of the kinematics and vestibular model are linked to the inputs of the virtual 

reality toolbox in order to bring about progress in the virtual world (Figure 8).  

 

6. Simulation and visualization 

6.1. Rotation movement of the chair 

This experiment mimics the usual diagnosis procedure of the lateral semicircular canal. During this 

first experiment the patient sits down on the rotary chair. His head is kept fixed relatively to the device 

and tilted downward of 25° to bring the lateral semircircular canal in the plane of rotation. Then, a 

constant angular velocity of 100 /sδ = °ɺ is imposed to the chair. This motion starts at t0=1s and achieves 

its steady state in 1s. This simulation lasts 40 seconds. The volume displacement of the cupula is 

shown on Figure 9. If the canals are considered to be orthogonal, the endolymph in the lateral canals 
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lags behind - at the beginning of the rotation - due to its inertia. Consequently, the cupula of the lateral 

semicircular canal is deflected in the opposite direction of head movement (Figure 9a). This deflection 

causes a sensation of motion. The angular velocity of the chair being constant, the endolymph in the 

lateral canal tends to catch up with the rotation of the head eliminating the relative movement. 

Therefore, the cupula returns to a vertical position due to its elastic properties, and the sensation of 

motion ceases.   

Figure 9(a) and (b) enables us to show the influence of the non-orthogonality of the canals. From these 

plots, a slight displacement of the anterior and posterior cupula is observed that does not appear in the 

case of an orthogonal system. However, the lateral canal is the most stimulated as its plane is quasi-

perpendicular to the axis of rotation. The displacement of the lateral cupula generates a sensation of 

rotation, which lasts about thirty seconds at a constant angular velocity. 

 

6.2. Rotation movement of the chair and then of the head 

The rotation movement of the chair is the same as above. In this case the subject does a downward and 

an upward head rotation at time t=10s and t=25s respectively. For the sake of simplicity, the amplitude 

of these movements is here equal to 90°. This kind of head motion during a constant angular velocity 

of the chair involves the stimulation of the other canals. The displacements of the cupulas can be 

observed on Figure 9(c) and (d). Until t being equal to 10s, the movement of the cupulas is the same as 

the previous experiment. At time 10s, the subject does a downward head rotation of 90° from the 

previous head position. In the case of an orthogonal set of canals, this head motion brings the posterior 

canal into the plane of rotation. Therefore the cupula of the posterior canal is in turn deflected whereas 

the cupula of the lateral canal bends in the opposite direction as the fluid keeps moving relatively to 

the wall of the lateral canal. At time t=25s, the reverse phenomenon is produced as the subject makes 

an upward head rotation of the same magnitude. 

It can be noticed that the succession of head movements, during a constant rotation of the body, 

creates erroneous motion sensations known as the Coriolis Effect in aeronautic terms.  For example, at 

t=5s the downward motion of the head engenders a positive displacement of the lateral cupula. This 
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means that during a few seconds the subject has a sensation of rotation opposite to the rotation of the 

chair. This is due to the inertia of the fluid which is still in motion inside the canal.  

 

6.3. VR as a demonstration tool 

The aim of showing virtually the diagnosis test undertaken by the specialist is to allow a better 

comprehension of what happens inside the inner ear during a specific head movement. The state of 

each sensor is computed and visualized during the experimental protocol. Figure 10 illustrates the 

patient sitting on the rotary chair and undergoing a downward movement of his head. The 

displacement of the cupula of each canal can be observed.  

Please note that a video of this simulation and the source code are available at the link: 

http://personnel.supaero.fr/morlier-joseph/Inner%20ear.html 

 

Conclusion 

In the vestibular diagnosis context, the model presented in this article simulates several rotation 

movements of the head which can be entirely defined by the user through the graphical user interface. 

It computes equations of motion in the coordinate system attached to the semicircular canals which 

underline the fact that all the canals are stimulated for any rotation. The virtual reality environment 

allows the user to observe what theoretically happen at the level of each sensor. This model also 

provide a better understanding of different kinds of erroneous motion sensations which may appear 

during combined rotation motions. This point might be of interest in the aeronautical field for the 

training of fighter or aerobatics pilots.  

Improvements to the model presented in this article are already underway. In particular, a finite 

element model of the cupulas and the utricle, which takes into account the fluid structural interaction, 

is in progress. The point of this modeling is to determine whether any coupling terms exist between 

the function of each canal, due to fluid flow. 

At this moment, the major limitation of this model is that it does not entirely represent the diagnosis 

procedure of the vestibular system. Currently, the way to explore the vestibular component of the 
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inner ear is to record the vestibulo-ocular-reflex (VOR) using different experiments including the 

rotary chair test. This reflex is directly linked to the stimulation of the vestibular sensors. By 

examining this ocular reflex relatively to the imposed rotational movements the specialists are able to 

detect any vestibular deficiencies. A potential future application of this model could be its use during 

diagnosis of the vestibular system in order to have a comparison between clinical results and those of 

the model.  To achieve this goal this first version has to be enhanced: 1) by taking into account the link 

between the vestibular sensors and the vestibule-ocular-reflex, i.e. the transfer functions between these 

two components (Zupan [28]), 2) by incorporating eye movements in the virtual scene. 

Finally, further works will focus on the development of a demonstration tool based on the technology 

of Augmented Reality (AR). The user’s view of the real world is enhanced with additional information 

generated from a computer model. By exploiting people’s visual and spatial skills, AR brings 

information into the user’s real world. That is, AR allows the user to stay in touch with the real 

environment. This is in contrast with virtual reality (VR) in which the user is completely immersed in 

an artificial world and cut off from the real world. Hence Augmented Reality is a promising tool for 

visualizing information from both dynamic models and experimentations (clinical tests, etc) and so on 

to develop an enhanced vestibular diagnosis tool. 
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Appendix 1 
 
 
Model parameters of the sensors (Rabbitt [7], Grant et al. [19]) 
 
m  Endolymph mass within the horizontal canal 1070 g/cm4 
c  Viscous coefficient within the horizontal canal 179 000 g.s-1.cm-4 

k  Cupula stiffness 1.33GPa/m3 

d  Inertial forcing coefficient 0.76 g/cm 

1cτ  slow time constant of the horizontal semicircular canal 13.2 s 

2cτ  fast time constant of the horizontal semicircular canal 0.006 s 

ρ  Endolymph density 1 g/cm3 

Q  Endolymph volume displacement cm3 

cQ  Cupula volume displacement cm3 

0ρ  Otoconial layer density 1.35 g/cm3 

0m  Otoconial layer mass g 

0c  Drag coefficient associated with the endolymph and gel layer g.s-1.cm-4 

0k  Stiffness coefficient associated with the gel layer GPa/m3 

1otoτ  slow time constant of the otolith organs 120ms 

2otoτ  fast time constant of the otolith organs 4µs  

g
�

 gravity 9.81 m/s2 

Ωɺ  Head angular velocity rad/s 

Ωɺɺ  Head angular acceleration rad/s² 

u  Otoconial displacement m 

sf  Gravitoinertial acceleration in the plane of the organ, equal to 

.( )n g A−
�� �

 

m/s² 

A
�

 Inertial acceleration of the head  m/s² 
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Appendix 2 
 

Model kinematic variables 
 

1/ 0ω�  Rotary chair angular velocity relative to R0 

2 /1ω�  Head angular velocity relative to R1 

2 / 0ω�  Head angular velocity relative to R0 

2 /1ω�ɺ  
Head angular acceleration relative to R1  

2 / 0ω�ɺ  
Head angular acceleration relative to R0 

( , , )α β γɺɺ ɺ  Components of 2 /1ω� in R2 

(0,0, )δɺ  Components of 1/ 0ω� in R1 

2
(0, ,0)RAB d=

����

 
Vector defining the centre position B of R3 

2 / 0,BA
�

 
Absolute linear acceleration of B 

2 /1,BA
�

 
Linear acceleration of B relative to R1 

2 /1,BV
�

 
Linear velocity of B relative to R1 
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List of tables 
 
 

 
Table 1: expressions of the head angular velocity and of the acceleration of the origin of R3.  
 
 
 
 
 
 

ae
�

 2.212aψ ≈  0.177aθ ≈ °  0aϕ =  

le
�

 2.336pψ ≈  0pθ =  0.274pϕ ≈ −  

pe
�

 0lψ =  0.331lθ ≈ −  0.038lϕ ≈  

 
 
Table 2: Euler angles in radian which define the perpendicular of each canal. 
 
 
 
 
  

 Case 1 Case 2 Case 3 

2 / 0ω
�����

 2 / 0 2( )Zω γ δ= +
��
ɺɺ  2 / 0 2 2 2

sin cosX Y Zω δ β β δ β= − + +
� � ��

ɺ ɺ ɺ

 
2 / 0 2 2 2

sin cosX Y Zω α δ α δ α= + +
� � ��

ɺ ɺɺ  

 

2/0,BA
��������

 
2/ 0

2
0

2² ²,

dd

d ddB

R

A
γ

γ γδ

δ

δ

−

−

−

− −= ɺɺ

ɺ

ɺ

ɺ

ɺ

ɺɺ
�

 

2/ 0

2

cos

²

sin

,

d

d

d

B

R

A
δ β

δ

δ β

−

−

−

=
ɺɺ

ɺ

ɺɺ

�  

2

2/0,

cos

² (cos )²

² cos

2 sin

²

sin

B

R

d

d

d

d

d

dA

δ α

δ

α

α

αδ α

δ

α

α

α −

+

+−

−=

ɺɺɺɺ

ɺ

ɺ

ɺ

ɺɺ

�  
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Figures 

 

 

Figure 1: Schematic diagram of the balance system. 

 

 

 

 

 

Figure 2: Global visualization of the inner ear and zoom on the 3 canals (angular sensors).  
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Figure 3: Mechanism of the otolith organs, showing their sensitivity to linear acceleration and head tilt. 
These drawings illustrate the shearing force in the plane of the utricular otolith membranes. For instance, a 30 
degrees head-tilt elicits a force equivalent to 0.5G in the plane of the utricular macula. The same stimulus can be 
achieve using a linear acceleration of 0.5G with the head upright. 
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Figure 4: (a) Visualization of the diagnosis procedure, (b) Different coordinate systems : R0: (O, 0X
�

, 0Y
�

, 0Z
�

) 

fixed orthogonal coordinate system ,R1: (O, 1X
�

, 1Y
�

, 1Z
�

) orthogonal coordinate system attached to the rotating 

chair, R2: (A, 2X
�

, 2Y
�

, 2Z
�

) orthogonal coordinate system attached to the head, R3: (B, 3X
�

, 3Y
�

, 3Z
�

) non-orthogonal 

coordinate system defined by the 3 perpendiculars of the semicircular canals, (c) effect of head rotation on the 
semicircular canals, the displacement of the cupula is plotted on figure 6 (a) or (b). 
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Figure 5: Schematic block diagram of the simulink model. The computation of the model is divided in several 
steps. First, the user implements the motions. Then, as soon as the simulation is run, 1) equations of motion are 
solved; 2) angular velocity and gravitoinertial acceleration are applied to the sensors models; 3) the state of each 
sensor is determined in real time. 

 

Figure 6: Graphical user interface. I : parameters of the rotary chair; II : parameters of exterior linear 
accelerations; III : parameters of head movements; IV : simulation, results and virtual reality push buttons. 



  

 - 22 - 

 

Figure 7: Definition of head movements: pitch, roll and yaw. 
 

 

Figure 8: Schematic block diagram of  how the virtual reality world is created and controlled. The VRML files 
are created using a CAD software. The Simmechanics module permits to represent and keep the physics of the 
modeling. All the data are imported into a Matlab/Simulink model where the virtual reality toolbox is used. This 
Simulink file is controlled by the kinematics of the simulation and the vestibular model. 
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Figure 9: Displacement of the cupula of each canal due to: (a) and (b) rotation movement of the chair, (c) and 
(d) rotation movement of the chair and of the head. The graphics (a) and (c) correspond to an orthogonal 
coordinate system R3, whereas (b) and (d) correspond to a non-orthogonal coordinate system R3. The non-
orthogonality of R3 entails a slight response of the verticals canals. This kind of response might be similar in the 
case of the existence of coupling terms between the canals due to fluid flow. 
 

 

Figure 10: Visualization of a virtual scene: The state of each sensor can be visualized on real time during the 
test. The learning process is enhanced using user interactivity. 
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