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Abstract.  This  paper  presents  an  introduction  to  structural  damage  assessment  using  image 
processing on real data (non ideal conditions). Our contribution is much more a groundwork than a 
classical  experimental  validation.  After  measuring  the  bridge  dynamic  parameter  on  a  small 
resolution  video,  we  conjointly  present  advantages  and  limitations  of  our  method.  Finally  we 
introduce several “computer vision” based rules and focus on the technical ability to detect damage 
using camera and video motion estimation. 

Introduction

In mechanical engineering, modal control is widely used to assess civil engineering structures by 
means of vibration measurement. Indeed vibration monitoring is a low cost and non destructive tool 
which could  even be used with  natural  excitation  (wind,  traffic...).  The paradigm of  Structural 
Health  Monitoring  (SHM)  approach  in  damage  detection  is  based  on  the  assumption  that 
modifications of structural properties will  alter the dynamic characteristics of the structure (i.e., 
resonant frequencies, modal damping and mode shapes) [4]. Many researchers [5,8,9] focused their 
studies on the characterization of the structural mode shapes which contain spatial information and 
appear to be more sensitive to the presence of damage zones than natural frequencies. The goal of 
our work is to develop a method to replace classical contact accelerometers based instrumentation 
with an optical camera working with an intelligent software to continuously assess the dynamic 
parameters (frequency, damping and mode shape) of the structure under study. Previous works 
[10,11,13]  obtained modal parameters in introducing real targets on the structure or in studying 
simple structure in ideal conditions. Our goal is not to compare our method with classical modal 
testing  but  to  show  the  ability  of  both  high  speed  camera  and  openCV  framework  to  easily 
reconstruct displacement from a simple video (the step of verification can not be done since the 
video is not our work). In some applications, video camera can replace accelerometer for bending 
displacement estimation under 2 hypothesis: firstly the number of Frame Per Second (FPS) respect 
the Nyquist frequency criteria and secondly the plan of study is perpendicular to the studied 2D 
structure  (small  angular  errors).We  introduce  an  advanced  motion  estimation  algorithm  [7]  to 
reconstruct the displacement signals under linear displacement hypothesis. They are obtained using 
Lucas-Kanade “optical flow” algorithm [3] under OpenCV [15].
The paper is  organized in  3 chapters,  the first  introduces the theoretical  background of system 
identification in structural vibration. The second part discusses of the “optical flow” algorithm and 
describes the originality of the technique to reconstruct continuous displacement signals from non 
complete  motion  data.  We  also  validate  our  advanced  method  in  using  video 
(http://home.messiah.edu/~barrett/Video.html).  The  video  (2harmonicside.mpeg1)  is  the  second 
harmonic dynamic response of a suspension bridge excited by human loading. Finally the third 
section  is  focused  on  the  technical  ability  to  detect  damage  using  camera  and  video  motion 
estimation while proposing innovative approaches in dynamic structural monitoring.

1 It won the first prize in the 1972 American Association of Physics Teachers Biannual Film Competition
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System identification in structural dynamics

Basically, modal analysis is the study of the natural characteristics of structures. Understanding the 
natural  frequency,  damping  and  mode  shape  helps  to  design  structural  system  for  noise  and 
vibration applications. Modal analysis is generally used to design/monitor all types of structures 
including automotive structures, aircraft structures, spacecraft...  The main approach to obtain the 
modal model is the so-called Experimental Modal Analysis (EMA), which is based on the measured 
forces and vibration responses of the structure excited in one or more locations. More generally, the 
process of finding a model from the data is called system identification, originating from the domain 
of electrical engineering. The Fourier Transform enables to obtain the frequency response function (

)j(H ω  with ω in rad/s) function of the displacement signal s(t) and excitation signal e(t) as:

)j(E
)j(S)j(H

ω
ωω = (1)

Moreover, as a direct result of the emerging information technology significant advances have been 
available to both modal test and analysis equipment, explaining the increasing interest for EMA.
Operational Modal Analysis (OMA) is defined as the determination of a modal model obtained by 
response  testing  only [12].  So  no  measurement  of  input  forces  are  required  and  measurement 
procedure is similar to Operational Deflection Shapes (ODS) measurement. The main interest of 
this  method is  the determination of modal  model  under operational conditions (in  situ testing). 
Moreover  since  it  is  used  successfully  in  civil  engineering  applications  (ambient  or  natural 
excitation  for  bridges  and  buildings)  it  begins  to  be  introduced  in  mechanical  engineering 
applications like rotating machinery or in-flight testing. Two main signal processing method exist: 
frequency domain technique like Frequency Domain Decomposition (FDD) using Singular Value 
Decomposition (SVD) or time domain technique like time data driven algorithms using Stochastic 
Subspace  Identification  (SSI).  Table  1  tries  to  resume  important  drawbacks  and  interesting 
advantages dealing with the OMA method:

Drawbacks
• Unscaled (non calibrated) modal model
• Some a priori knowledge is advantageous
• New technique to most engineers
• Large  time  histories  might  be  required:  more 

data  handling  capacity  is  needed  (higher 
computational cost)

Advantages
• No  elaborate  fixture  of  shakers  and  force 

transducers
• Short setup time
• No crest factor problems as when using hammers
• No potential destruction of structure
• Modal model represent real operating conditions
• True boundary conditions
• Actual force and vibration levels
• Ambient or unmeasured excitation required
• No interference or interruption of daily use

Table 1: Benchmark of operational modal analysis

Image processing method for dynamic parameter extraction

A way to detect moving objects is by investigating the optical flow which is an approximation of 
two dimensional flow field from the image intensities. It is computed by extracting a dense velocity 
field from an image sequence. The optical flow field in the image is calculated on basis of the two 
assumptions that the intensity of any object point is constant over time and that nearby points in the 
image  plane  move  in  a  similar  way  [1].  Additionally,  the  easiest  method  of  finding  image 
displacements with optical flow is the feature-based optical flow approach that finds features (for 



example, image edges, corners, and other structures well localized in two dimensions) and tracks 
their displacements from frame to frame. The LK [7] tracker is based upon the principle of optical 
flow and motion fields [1,2,3,7] that allows to recover motion without assuming a model of motion. 
OpenCV means Intel® Open source Computer Vision Library [15]. It is a collection of C functions 
and a  few C++ classes  that  implement  some popular  computer  vision  algorithms.  We use  the 
function  cvCalcOpticalFlowPyrLK which  implements  sparse  iterative  version  of  Lucas-Kanade 
optical flow in pyramids [3]. It calculates coordinates of the feature points on the current video 
frame given their coordinates on the previous frame with sub-pixel accuracy.
For practical purposes we use this algorithm on the bridge video in order to track the motion of the 
target pixels (Figure 1). It offers various advantages like stable and accurate motion results in non 
optimal environment. 

Figure 1: Example of motion estimation, using an adaptation of lkdemo algorithm. The 10 initialization points 
are in green full circle and the zone under study is in orange.

But this algorithm also offers some drawbacks: no motion can be detected in several zone of the 
image due  to  low contrast  (73  % of  the  tracked points  are  used  to  reconstruct  mode shapes). 
Moreover the main problem occurs in signal reconstruction (displacement).  In fact target pixels 
which move around x axis create partial modal data (so displacement signals are irregular data). To 
compensate the missing data (Figure 2), we use the small linear displacement hypothesis to enhance 
the resolution of the motion. If the absolute value of x abscissa relative displacement is less than 3 
the data is used, if not , the data is not used (a correct percentage of 27 % of loss).

Figure 2 : Relative pixel displacement along X (black dot line) and Y (blue circle in continuous line) for the first 
pixel detected motion. Y has an harmonic form as the bridge is excited in bending (Y axis).



Future works will focus on passing through this hypothesis in developing a correcting factor of Y 
displacement function of relative X displacement. Neural networks should be able to reconstruct 
missing data from neighbour value interpolation using their good generalization abilities even in 
non linear problem.

The proposed validation is a bridge monitoring using real video data. We extract the 3 dynamic 
parameters from displacement signals estimated with optical flow. If this work is done regularly, 
specialists of the bridge could notice the change in these parameters and allow an easy structural 
health monitoring of the structure. This groundwork will permit to develop several enhance tools 
(accurate signal reconstruction and ambient  excitation)  to adapt  the method to “ real  structure” 
monitoring.  Global  dynamic parameters  of  the  bridge  are  estimated  from  FRF  using  classical 
frequency method called Rational Fraction Polynomial (RFP)  and are listed in table 2.

)f(E )f(σ )(E ξ )( ξσ
0.48 (Hz) 1E-2 4.7 (%) 1E-2

Table 2: Estimated mean E and standard deviation σ for frequency f and damping ξ

The mode shape of the second harmonic is estimated (figure 3) using the fact that the unknown 
human  loading  excitation  is  very  close  from  the  second  harmonic  (  )E(jω of  Equation  1  is 
maximal). So the only error due to peak picking and RFP method is that the mode is not scaled. We 
also fit experimental data with the analytical equation of the dynamic motion of a beam using least 
square  method  with  very good  correlation  ( 0.9919R2 = ).  A this  step  further  works  can be  done 
because of unknown information (geometrical characteristics of the bridge).

Figure 3: Estimated mode shape from peak picking method (blue circle), RFP method (dot green line with 
square) and analytical mode shape (red continuous line).

In our experimental results the spatial sampling is not regular (due to complex zone around the 
human excitation [120-160 pixels]), so in perspective this zone could not be used with curvature 
damage detection algorithms. One of other limitations is that the influence of the camera viewpoint 
and calibration is not taking into account in our study. Moreover the extracted mode shape is not 
scaled  due  to  the  fact  that  human  harmonic  loading  (unknown  force)  has  excited  the  second 
harmonic of the bridge. Finally the vertical sensitivity will be low due to the size of the deflection 
compared to the length of the bridge. Nevertheless the main interest of our method is that no targets 
need to be placed on the structure and also no time consuming computation is needed (for real time 
applications). 



From video motion estimation to dynamic monitoring

An excellent survey [2] introduces several classes of optical flow estimation methods and compare 
the performance of them . There are several benefits of using high frame rate sequences. First, as 
frame rate increases, the intensity values along the motion trajectories vary less between consecutive 
frames when illumination level changes Another important benefit is that as frame rate increase the 
captured sequence exhibits less motion aliasing. For example, when motion aliasing occurs a wagon 
wheel might appear to rotate backward even to a human observer when seen on TV. To recover the 
original continuous spatio-temporal video signal from its temporally sampled version, it is clear that 
the temporal sampling frequency (or frame rate) fs must be greater than 2Bt (Equation 2) in order to 
avoid aliasing in the temporal direction (Nyquist criteria). If we assume global motion with constant 
velocity vx and vy (in pixels per standard-speed frame) and spatially band limited image with Bx and 
By  as the horizontal and vertical spatial bandwidths (in cycles per pixel), the minimum temporal 
sampling frequency fs (in cycles per speed frame) to avoid motion aliasing is given by:

2By.vy  2Bx.vx  2Bt fs +== (2)

The assumptions of optical ideal conditions and ideal blur filter have been done here. Typical high 
speed camera uses a state-of-the-art CMOS sensor that records images at 1000 FPS (ore more) at 

10241280 ×  pixel  resolution  (ore  more).  Our  video  data  resolution  is 240320 × ,  we  succeed  to 
initialize the optical  flow with 16 targets on a studied length of 260 pixels.  So we propose to 
introduce the Pixel Spatial Resolution (SPR in pixels). We introduce in Equation 3, 2 empirical 
values for low ( 16PSRo ≈ ) and high ( 46PSRm ≈ ) optical flow performance results:

L
PSR SR o

o = and 
L

PSR
 SR m

m = . (3)

The figure 4 illustrates the variation of the spatial resolution function of the beam length L. At a 
constant  image resolution the spatial  resolution decreases with the beam length (the number of 
targets is constant). Using beam like structure of one meter length with the best optical flow results, 
(SRm) the spatial resolution is closed to LDV resolution. So we can assess small structure using 
classical  algorithm of mode shape based damage detection [4,5,8,9]  and also use the results  of 
previous works [8] to estimate the damage size. These methods use the curvature mode shape [4,8] 
properties  to  find relationship between optimal  sampling data and measurement noise.  In video 
processing, the less objectionable noise is the random noise usually much more difficult to remove 
without degrading the image than fixed pattern noise and banding noise.

Figure 4: Minimal spatial resolution (SRo) versus length of the studied beam (L) 



Conclusion

Our paper tries to establish that computer vision methods are able using Lukas-Kanade optical flow 
algorithm  to  extract  reliable  dynamic  parameter.  We  proposed  a  validation  software  (under 
openCV) to  extract  the second mode,  frequency and damping of a bridge excited  by harmonic 
loading. High speed camera and robust optical setup will allow laboratory works to monitor a large 
structure  using  mode  shape  based  damage  detection  method.  Making  the  assumption  of  high 
contrast and high vertical resolution (to obtain sufficient deformation) our method coupled with 
operational modal analysis could also be used to monitor real structure like bridge under ambient 
excitation.  Finally  computer  vision  method  are  less  expensive  and  more  convenient  for  field 
instrumentation  than  laser  Doppler  vibrometer,  and  piezo-accelerometer  with  the  goal  of  a 
continuous monitoring of large structure (frequency bandwidth of several hundred of Hz). Keeping 
in mind the fact that accuracy and low noise measurement are significant parameters to succeed in 
locating damage, further works should focus on comparing computer vision to vibrometer laser 
performances in a laboratory experiment. It will be also interesting to obtain high resolution mode 
shapes from ambient vibration measurement and synchronized multiple camera. 
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