120 research outputs found

    Negative correlation between porosity and hydraulic conductivity in sand-and-gravel aquifers at Cape Cod, Massachusetts, USA

    Get PDF
    Although it may be intuitive to think of the hydraulic conductivity K of unconsolidated, coarse-grained sediments as increasing monotonically with increasing porosity ɸ , studies have documented a negative correlation between these two parameters under certain grain-size distributions and packing arrangements. This is confirmed at two sites on Cape Cod, Massachusetts, USA, where groundwater investigations were conducted in sand-and-gravel aquifers specifically to examine the interdependency of several aquifer properties using measurements from four geophysical well logs. Along with K and ɸ , the electrical resistivity R0 and the natural gamma activity γ of saturated deposits were determined as functions of depth. Qualitative examination of results from the first site implies a negative correlation between K and ɸ that is substantiated by a rigorous multivariate analysis of log data collected from the second site. A principal components analysis describes an over determined system of inversion equations, with approximately 92% of the cumulative proportion of the total variance being accounted for by only three of the four eigenvectors. A subsequent R-mode factor analysis projects directional trends among the four variables (K, ɸ , R0 and γ), and a negative correlation between K and ɸ emerges as the primary result. q 2005 Elsevier B.V. All rights reserved

    Fractured-Aquifer Hydrogeology from Geophysical Logs; The Passaic Formation, New Jersey

    Get PDF
    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84° Wand dip of 20° N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79° E and dip of 71 0 S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities ofthe logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure within this aquifer that is defined by fracture type and orientation. Fluid flow near the surface is controlled primarily by the highly transmissive, subhorizontal bedding-plane partings. As depth increases, the high-angle fractures apparently become more dominant hydrologically

    Constraints upon water advection in sediments of the Mariana Trough

    Get PDF
    Thermal gradient measurements, consolidation tests, and pore water compositions from the Mariana Trough imply that water is moving through the sediments in areas with less than about 100 m of sediment cover. The maximum advection rates implied by the thermal measurements and consolidation tests may be as high as 10−5 cm s−1 but are most commonly in the range of 1 to 5×10−6 cm s−1. Theoretical calculations of the effect of the highest advection rates upon carbonate dissolution indicate that dissolution may be impeded or enhanced (depending upon the direction of flow) by a factor of 2 to 5 times the rate for diffusion alone. The average percentage of carbonate is consistently higher in two cores from the area with no advection or upward advection than the average percentage of carbonate in three cores from the area with downward advection. This increase in average amount of carbonate in cores with upward moving water or no movement cannot be attributed solely to differences in water depth or in amount of terrigenous dilution. If the sediment column acts as a passive boundary layer, then the water velocities necessary to affect chemical gradients of silica are in the range 10−9 to 10−10 cm s−l. However, if dissolution of silica occurs within the sediment column, then the advection velocities needed to affect chemical gradients are at least 3×10−8 cm s−l and may be as high as 3×10−6 cm s−l. This order of magnitude increase in advection velocities when chemical reactions occur within the sediments is probably applicable to other cations in addition to silica. If so, then the advection velocities needed to affect heat flow ( >10−8 cm s−1) and pore water chemical gradients are much nearer in magnitude than previously assumed

    Fractured-Aquifer Hydrogeology from Geophysical Logs: Brunswick Group and Lockatong Formation, Pennsylvania

    Get PDF
    The Brunswick Group and the underlying Lockatong Formation are composed of lithified Mesozoic sediments that constitute part of the Newark Basin in southeastern Pennsylvania. These fractured rocks form an important regional aquifer that consists of gradational sequences of shale, siltstone, and sandstone, with fluid transport occurring primarily in fractures. An extensive suite of geophysical logs was obtained in seven wells located at the borough of Lansdale, Pennsylvania, in order to better characterize the areal hydrogeologic system and provide guidelines for the refinement of numerical ground water models. Six of the seven wells are approximately 120 m deep and the seventh extends to a depth of 335 m. Temperature, fluid conductivity, and flowmeter logs are used to locate zones of fluid exchange and to quantify transmissivities. Electrical resistivity and natural gamma logs together yield detailed stratigraphic information, and digital acoustic televiewer data provide magnetically oriented images of the borehole wall from which almost 900 fractures are identified

    Developing conceptual hydrogeological model for Potsdam sandstones in southwestern Quebec, Canada

    Get PDF
    A hydrogeological study was conducted in Potsdam sandstones on the international border between Canada (Quebec) and the USA (New York). Two sandstone formations, arkose and conglomerate (base) and well-cemented quartz arenite (upper), underlie the study area and form the major regional aquifer unit. Glacial till, littoral sand and gravel, and marine silt and clay discontinuously overlie the aquifer. In both sandstone formations, sub-horizontal bedding planes are ubiquitous and display significant hydraulic conductivities that are orders of magnitude more permeable than the intact rock matrix. Aquifer tests demonstrate that the two formations have similar bulk hydrologic properties, with average hydraulic conductivities ranging from 2×10−5 to 4×10−5 m/s. However, due to their different lithologic and structural characteristics, these two sandstones impose rather different controls on groundwater flow patterns in the study area. Flow is sustained through two types of fracture networks: sub-horizontal, laterally extensive fractures in the basal sandstone, where hydraulic connectivity is very good horizontally but very poor vertically and each of the water-bearing bedding planes can be considered as a separate planar two-dimensional aquifer unit; and the more fractured and vertically jointed system found in the upper sandstone that promotes a more dispersed, three-dimensional movement of groundwater. Une étude hydrogéologique a été entreprise dans les grès de Potsdam, sur la frontière entre le Canada (Québec) et les Etats-Unis (New York). Sous le secteur d’étude, deux formations gréseuses, les arkoses et conglomérats (base) et les arénites quartzeuses cimentées (sommet), forment une unité aquifère majeure à l’échelle régionale. Les moraines glaciaires, les sables et graviers littoraux, et les argiles et silts marins recouvrent l’aquifère de manière discontinue. Dans les deux formations gréseuses, les litages sub-horizontaux sont omniprésents, et présentent des conductivités hydrauliques significatives, supérieures de plusieurs ordres de grandeur à celles de la matrice rocheuse intacte. Les pompages d’essai démontrent que les deux formations ont des propriétés hydrologiques apparentes comparables, avec notamment des conductivités hydrauliques comprises entre 2×10−5 et 4× 10−5 m/s. Cependant, du fait de leurs lithologies et de leurs caractéristiques structurales contrastées, ces deux formations gréseuses imposent des contrôles différents sur les écoulements souterrains dans le secteur d’étude. L’écoulement est soutenu par deux types de réseaux de fractures : des fractures latéralement extensives subhorizontales dans les grès de base, où la connectivité hydraulique est très bonne horizontalement mais médiocre verticalement, et où chacun des plans aquifères peut être considéré comme une unité aquifère isolée plane bidimensionnelle, et un système fissuré verticalement et plus fracturé situé dans les grès supérieurs, qui favorise des écoulements souterrains tridimensionnels et plus dispers

    The Influence of Topology on Hydraulic Conductivity in a Sand-and-Gravel Aquifer

    Get PDF
    A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie’s (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K

    The Influence of Topology on Hydraulic Conductivity in a Sand-and-Gravel Aquifer

    Get PDF
    A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie’s (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K

    Fractured-Aquifer Hydrogeology from Geophysical Logs: Brunswick Group and Lockatong Formation, Pennsylvania

    Get PDF
    The Brunswick Group and the underlying Lockatong Formation are composed of lithified Mesozoic sediments that constitute part of the Newark Basin in southeastern Pennsylvania. These fractured rocks form an important regional aquifer that consists of gradational sequences of shale, siltstone, and sandstone, with fluid transport occurring primarily in fractures. An extensive suite of geophysical logs was obtained in seven wells located at the borough of Lansdale, Pennsylvania, in order to better characterize the areal hydrogeologic system and provide guidelines for the refinement of numerical ground water models. Six of the seven wells are approximately 120 m deep and the seventh extends to a depth of 335 m. Temperature, fluid conductivity, and flowmeter logs are used to locate zones of fluid exchange and to quantify transmissivities. Electrical resistivity and natural gamma logs together yield detailed stratigraphic information, and digital acoustic televiewer data provide magnetically oriented images of the borehole wall from which almost 900 fractures are identified

    Costa Rica Rift hole deepened and logged

    Get PDF
    During Leg 111 of the Ocean Drilling Program, scientists on the drilling vessel JOIDES Resolution studied crustal structure and hydrothermal processes in the eastern equatorial Pacific. Leg 111 spent 43 days on its primary objective, deepening and logging Hole 5048, a deep reference hole in 5.9-million-year-old crust 200 km south of the spreading axis of the Costa Rica Rift. Even before Leg 111 , Hole 5048 was the deepest hole drilled into the oceanic crust, penetrating 274.5 m of sediments and 1,075.5 m of pillow lavas and sheeted dikes to a total depth of 1,350 m below sea floor (mbsf). Leg 111 deepened the hole by 212.3 m to a total depth of 1,562.3 mbsf (1,287.8 m into basement), and completed a highly successful suite of geophysical logs and experiments, including sampling of borehole waters
    • …
    corecore