64 research outputs found

    Computer simulations reveal novel properties of the cell-cell signaling network at the shoot apex in /Arabidopsis

    Get PDF
    The active transport of the plant hormone auxin plays a major role in the initiation of organs at the shoot apex. Polar localized membrane proteins of the PIN1 family facilitate this transport, and recent observations suggest that auxin maxima created by these proteins are at the basis of organ initiation. This hypothesis is based on the visual, qualitative characterization of the complex distribution patterns of the PIN1 protein in Arabidopsis. To take these analyses further, we investigated the properties of the patterns using computational modeling. The simulations reveal previously undescribed properties of PIN1 distribution. In particular, they suggest an important role for the meristem summit in the distribution of auxin. We confirm these predictions by further experimentation and propose a detailed model for the dynamics of auxin fluxes at the shoot apex

    Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Get PDF
    Background: The Wuschel related homeobox (WOX) family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG) using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results: The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion: Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most likely by preventing premature differentiation. The future use of Ostreococcus tauri and Physcomitrella patens as biological models should allow us to obtain a better insight into the functional importance of WOX13 OG genes

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems

    No full text
    We have analysed the role of a microRNA, miR164, in boundary formation during organ initiation from Arabidopsis meristems. The establishment and maintenance of the boundary domain are controlled by three partially redundant genes, CUP-SHAPED COTYLEDON1 (CUC1), CUC2 and CUC3. We show that miR164 overexpression phenocopies the cuc1 cuc2 double mutant by inducing post-transcriptional downregulation of CUC1 and CUC2 but not CUC3 mRNA levels. Disruption of CUC2 regulation by miR164, either by making CUC2 resistant to the miRNA or by reducing miRNA levels leads to similar enlarged boundary domains. We relate this enlargement to the division patterns of the boundary cells. We propose that miR164 constrains the expansion of the boundary domain, by degrading CUC1 and CUC2 mRNAs

    MicroRNA regulation of the CUC genes is required for boundary size control in <em>Arabidopsis</em> meristems

    No full text
    International audienceWe have analysed the role of a microRNA, miR164, in boundary formation during organ initiation from Arabidopsis meristems. The establishment and maintenance of the boundary domain are controlled by three partially redundant genes, CUP-SHAPED COTYLEDON1 (CUC1), CUC2 and CUC3. We show that miR164 overexpression phenocopies the cuc1 cuc2 double mutant by inducing post-transcriptional downregulation of CUC1 and CUC2 but not CUC3 mRNA levels. Disruption of CUC2 regulation by miR164, either by making CUC2 resistant to the miRNA or by reducing miRNA levels leads to similar enlarged boundary domains. We relate this enlargement to the division patterns of the boundary cells. We propose that miR164 constrains the expansion of the boundary domain, by degrading CUC1 and CUC2 mRNAs

    Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis

    No full text
    International audienceIn plants, the arrangement of organs along the stem (phyllotaxy) follows a predictable pattern. Recent studies have shown that primordium position at the meristem is governed by local auxin gradients, but little is known about the subsequent events leading to the phyllotaxy along the mature stem. We show here that plants expressing a miR164-resistant CUP-SHAPED COTYLEDON2 (CUC2) gene have an abnormal phyllotactic pattern in the fully grown stem, despite the pattern of organ initiation by the meristem being normal. This implies that abnormal phyllotaxy is generated during stem growth. These plants ectopically express CUC2 in the stem, suggesting that the proper timing of CUC2 expression is required to maintain the pattern initiated in the meristem. Furthermore, by carefully comparing the phyllotaxy in the meristem and along the mature inflorescence in wild types, we show that such deviation also occurs during wild-type development, although to a smaller extent. We therefore suggest that the phyllotactic pattern in a fully grown stem results not only from the organogenetic activity of the meristem, but also from the subsequent growth pattern during stem development

    The Genetic Control of Nectary Development

    No full text
    International audienceNectar is the most important reward offered by flowering plants to pollinators for pollination services. Since pollinator decline has emerged as a major threat for agriculture, and the food demand is growing globally, studying the nectar gland is of utmost importance. Although the genetic mechanisms that control the development of angiosperm flowers have been quite well understood for many years, the development and maturation of the nectar gland and the secretion of nectar in synchrony with the maturation of the sexual organs appears to be one of the flower's best-kept secrets. Here we review key findings controlling these processes. We also raise key questions that need to be addressed to develop crop ecological functions that take into consideration pollinators' needs

    Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato

    No full text
    Abscission is the mechanism by which plants disconnect unfertilized flowers, ripe fruits, senescent or diseased organs from the plant. In tomato, pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. Two non-allelic mutations, jointless (j) and jointless-2 (j-2), controlling pedicel abscission zone formation have been documented but only j-2 has been extensively used in breeding. J was shown to encode a MADS-box protein. Using a combination of physical mapping and gene expression analysis we identified a positional candidate, Solyc12g038510, associated with j-2 phenotype. Targeted knockout of Solyc12g038510, using CRISPR/Cas9 system, validated our hypothesis. Solyc12g038510 encodes the MADS-box protein SlMBP21. Molecular analysis of j-2 natural variation revealed two independent loss-of-function mutants. The first results of an insertion of a Rider retrotransposable element. The second results of a stop codon mutation that leads to a truncated protein form. To bring new insights into the role of J and J-2 in abscission zone formation, we phenotyped the single and the double mutants and the engineered alleles. We showed that J is epistatic to J-2 and that the branched inflorescences and the leafy sepals observed in accessions harboring j-2 alleles are likely the consequences of linkage drags

    Hybridization‐chain‐reaction is a relevant method for in situ detection of M2d‐like macrophages in a mini‐pig model

    No full text
    International audienceMacrophages are a heterogeneous population of cells with an important role in innate immunity and tissue regeneration. Based on in vitro experiments, macrophages have been subdivided into five distinct subtypes named M1, M2a, M2b, M2c, and M2d, depending on the means of their activation and the cell surface markers they display. Whether all subtypes can be detected in vivo is still unclear. The identification of macrophages in vivo in the regenerating muscle could be used as a new diagnostic tool to monitor therapeutic strategies for tissue repair. The use of classical immunolabeling techniques is unable to discriminate between different M2 macrophages and a functional characterization of these macrophages is lacking. Using in situ hybridization coupled with hybridization-chain-reaction detection (HCR), we achieved the identification of M2d-like macrophages within regenerating muscle and applied this technique to understand the role of M2 macrophages in the regeneration of irradiated pig-muscle after adipose tissue stem cell treatment. Our work highlights the limits of immunolabeling and the usefulness of HCR analysis to provide valuable information for macrophage characterization
    • 

    corecore