322 research outputs found

    Marine biodiversity in space and time : what tiny fossils tell

    Get PDF
    Biodiversity has been changing both in space and time. For example, we have more species in the tropics and less species in the Arctic and Antarctic regions, constituting the latitudinal diversity gradient, one of the patterns we can see most consistently in this complex world. We know much less regarding the biodiversity gradients with time. This is because it would require a well designed continuous monitoring program, which seldom persist beyond a few decades. But, luckily, we have remains of ancient organisms, called fossils. These are basically the only direct records of past biodiversity

    Cold-seep ostracods from the western Svalbard margin: direct palaeo-indicator for methane seepage?

    Get PDF
    Source at https://doi.org/10.5194/jm-37-139-2018 Despite their high abundance and diversity, microfossil taxa adapted to a particular chemosynthetic environment have rarely been studied and are therefore poorly known. Here we report on an ostracod species, Rosaliella svalbardensis gen. et sp. nov., from a cold methane seep site at the western Svalbard margin, Fram Strait. The new species shows a distinct morphology, different from other eucytherurine ostracod genera. It has a marked similarity to Xylocythere, an ostracod genus known from chemosynthetic environments of wood falls and hydrothermal vents. Rosaliella svalbardensis is probably an endemic species or genus linked to methane seeps. We speculate that the surface ornamentation of pore clusters, secondary reticulation, and pit clusters may be related to ectosymbiosis with chemoautotrophic bacteria. This new discovery of specialized microfossil taxa is important because they can be used as an indicator species for past and present seep environments (http: //zoobank.org/urn:lsid:zoobank.org:pub:6075FF30-29D5-4DAB-9141-AE722CD3A69B)

    Late Quaternary paleoceanography of Vestnesa Ridge, Fram Strait: Ostracode species as a potential indicator of cold seep activity

    Get PDF
    Past intensity of methane release from deep-ocean methane hydrates continues to be challenging to reconstruct reliably. Here, we used fossil ostracode fauna paired with foraminiferal δ13C values in a marine sediment core from Vestnesa Ridge, western Svalbard margin, to reconstruct methane seepage activity during the late Quaternary and to examine faunal response to deglacial climatic changes. Benthic foraminiferal δ13C values indicate methane seepage activity was relatively strong during marine isotope stage 2, corresponding to a high percentage of the ostracode Rosaliella svalbardensis in the assemblage. In contrast, this species was absent under conditions of no or very strong seepage of methane. Faunal changes in other taxa were more related to global climate changes regardless of the seepage activity. This result indicates that Rosaliella svalbardensis is a potential new useful proxy for past methane release

    Quantifying sample completeness and comparing diversities among assemblages.

    Get PDF
    We develop a novel class of measures to quantify sample completeness of a biological survey. The class of measures is parameterized by an order q ≥ 0 to control for sensitivity to species relative abundances. When q = 0, species abundances are disregarded and our measure reduces to the conventional measure of completeness, that is, the ratio of the observed species richness to the true richness (observed plus undetected). When q = 1, our measure reduces to the sample coverage (the proportion of the total number of individuals in the entire assemblage that belongs to detected species), a concept developed by Alan Turing in his cryptographic analysis. The sample completeness of a general order q ≥ 0 extends Turing's sample coverage and quantifies the proportion of the assemblage's individuals belonging to detected species, with each individual being proportionally weighted by the (q − 1)th power of its abundance. We propose the use of a continuous profile depicting our proposed measures with respect to q ≥ 0 to characterize the sample completeness of a survey. An analytic estimator of the diversity profile and its sampling uncertainty based on a bootstrap method are derived and tested by simulations. To compare diversity across multiple assemblages, we propose an integrated approach based on the framework of Hill numbers to assess (a) the sample completeness profile, (b) asymptotic diversity estimates to infer true diversities of entire assemblages, (c) non‐asymptotic standardization via rarefaction and extrapolation, and (d) an evenness profile. Our framework can be extended to incidence data. Empirical data sets from several research fields are used for illustration.publishedVersionPaid Open Acces

    Past and future decline of tropical pelagic biodiversity

    Get PDF
    Author's accepted version (postprint).This is an Accepted Manuscript of an article published by the National Academy of Sciences in PNAS on 26/05/2020.Available online: https://www.pnas.org/content/pnas/117/23/12891.full.pdfA major research question concerning global pelagic biodiversity remains unanswered: when did the apparent tropical biodiversity depression (i.e., bimodality of latitudinal diversity gradient [LDG]) begin? The bimodal LDG may be a consequence of recent ocean warming or of deep-time evolutionary speciation and extinction processes. Using rich fossil datasets of planktonic foraminifers, we show here that a unimodal (or only weakly bimodal) diversity gradient, with a plateau in the tropics, occurred during the last ice age and has since then developed into a bimodal gradient through species distribution shifts driven by postglacial ocean warming. The bimodal LDG likely emerged before the Anthropocene and industrialization, and perhaps ∼15,000 y ago, indicating a strong environmental control of tropical diversity even before the start of anthropogenic warming. However, our model projections suggest that future anthropogenic warming further diminishes tropical pelagic diversity to a level not seen in millions of years.acceptedVersio

    Global raster dataset on historical coastline positions and shelf sea extents since the Last Glacial Maximum

    Get PDF
    Motivation: Historical changes in sea level caused shifting coastlines that affected the distribution and evolution of marine and terrestrial biota. At the onset of the Last Glacial Maximum (LGM) 26 ka, sea levels were >130 m lower than at present, resulting in seaward-shifted coastlines and shallow shelf seas, with emerging land bridges leading to the isolation of marine biota and the connection of land-bridge islands to the continents. At the end of the last ice age, sea levels started to rise at unprecedented rates, leading to coastal retreat, drowning of land bridges and contraction of island areas. Although a growing number of studies take historical coastline dynamics into consideration, they are mostly based on past global sea-level stands and present-day water depths and neglect the influence of global geophysical changes on historical coastline positions. Here, we present a novel geophysically corrected global historical coastline position raster for the period from 26 ka to the present. This coastline raster allows, for the first time, calculation of global and regional coastline retreat rates and land loss rates. Additionally, we produced, per time step, 53 shelf sea rasters to present shelf sea positions and to calculate the shelf sea expansion rates. These metrics are essential to assess the role of isolation and connectivity in shaping marine and insular biodiversity patterns and evolutionary signatures within species and species assemblages. Main types of variables contained: The coastline age raster contains cells with ages in thousands of years before present (bp), representing the time since the coastline was positioned in the raster cells, for the period between 26 ka and the present. A total of 53 shelf sea rasters (sea levels <140 m) are presented, showing the extent of land (1), shelf sea (0) and deep sea (NULL) per time step of 0.5 kyr from 26 ka to the present. Spatial location and grain: The coastline age raster and shelf sea rasters have a global representation. The spatial resolution is scaled to 120 arcsec (0.333° × 0.333°), implying cells of c. 3,704 m around the equator, 3,207 m around the tropics (±30°) and 1,853 m in the temperate zone (±60°). Time period and temporal resolution: The coastline age raster shows the age of coastline positions since the onset of the LGM 26 ka, with time steps of 0.5 kyr. The 53 shelf sea rasters show, for each time step of 0.5 kyr, the position of the shelf seas (seas shallower than 140 m) and the extent of land. Level of measurement: Both the coastline age raster and the 53 shelf sea rasters are provided as TIFF files with spatial reference system WGS84 (SRID 4326). The values of the coastline age raster per grid cell correspond to the most recent coastline position (in steps of 0.5 kyr). Values range from 0 (0 ka, i.e., present day) to 260 (26 ka) in bins of 5 (0.5 kyr). A value of “no data” is ascribed to pixels that have remained below sea level since 26 ka. Software format: All data processing was done using the R programming language
    corecore