192 research outputs found
Probing Cosmic Strings with Satellite CMB measurements
We study the problem of searching for cosmic string signal patterns in the
present high resolution and high sensitivity observations of the Cosmic
Microwave Background (CMB). This article discusses a technique capable of
recognizing Kaiser-Stebbins effect signatures in total intensity anisotropy
maps, and shows that the biggest factor that produces confusion is represented
by the acoustic oscillation features of the scale comparable to the size of
horizon at recombination. Simulations show that the distribution of null
signals for pure Gaussian maps converges to a distribution, with
detectability threshold corresponding to a string induced step signal with an
amplitude of about 100 \muK which corresponds to a limit of roughly . We study the statistics of spurious detections caused by
extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds,
which represents the dominant source of contamination, we derive sky masks
outlining the available region of the sky where the Galactic confusion is
sub-dominant, specializing our analysis to the case represented by the
frequency coverage and nominal sensitivity and resolution of the Planck
experiment.Comment: 14 pages, 3 figures, to be published in JCA
Now You See It, Now You Don't: The Disappearing Central Engine of the Quasar J1011+5442
We report the discovery of a new "changing-look" quasar, SDSS
J101152.98+544206.4, through repeat spectroscopy from the Time Domain
Spectroscopic Survey. This is an addition to a small but growing set of quasars
whose blue continua and broad optical emission lines have been observed to
decline by a large factor on a time scale of approximately a decade. The 5100
Angstrom monochromatic continuum luminosity of this quasar drops by a factor of
> 9.8 in a rest-frame time interval of < 9.7 years, while the broad H-alpha
luminosity drops by a factor of 55 in the same amount of time. The width of the
broad H-alpha line increases in the dim state such that the black hole mass
derived from the appropriate single-epoch scaling relation agrees between the
two epochs within a factor of 3. The fluxes of the narrow emission lines do not
appear to change between epochs. The light curve obtained by the Catalina Sky
Survey suggests that the transition occurs within a rest-frame time interval of
approximately 500 days. We examine three possible mechanisms for this
transition suggested in the recent literature. An abrupt change in the
reddening towards the central engine is disfavored by the substantial
difference between the timescale to obscure the central engine and the observed
timescale of the transition. A decaying tidal disruption flare is consistent
with the decay rate of the light curve but not with the prolonged bright state
preceding the decay, nor can this scenario provide the power required by the
luminosities of the emission lines. An abrupt drop in the accretion rate onto
the supermassive black hole appears to be the most plausible explanation for
the rapid dimming.Comment: Submitted to MNRA
Towards an Understanding of Changing-Look Quasars: An Archival Spectroscopic Search in SDSS
The uncertain origin of the recently-discovered `changing-looking' quasar
phenomenon -- in which a luminous quasar dims significantly to a quiescent
state in repeat spectroscopy over ~10 year timescales -- may present unexpected
challenges to our understanding of quasar accretion. To better understand this
phenomenon, we take a first step to building a sample of changing-look quasars
with a systematic but simple archival search for these objects in the Sloan
Digital Sky Survey Data Release 12. By leveraging the >10 year baselines for
objects with repeat spectroscopy, we uncover two new changing-look quasars, and
a third discovered previously. Decomposition of the multi-epoch spectra and
analysis of the broad emission lines suggest that the quasar accretion disk
emission dims due to rapidly decreasing accretion rates (by factors of >2.5),
while disfavoring changes in intrinsic dust extinction for the two objects
where these analyses are possible. Broad emission line energetics also support
intrinsic dimming of quasar emission as the origin for this phenomenon rather
than transient tidal disruption events or supernovae. Although our search
criteria included quasars at all redshifts and transitions from either
quasar-like to galaxy-like states or the reverse, all of the clear cases of
changing-look quasars discovered were at relatively low-redshift (z ~ 0.2 -
0.3) and only exhibit quasar-like to galaxy-like transitions.Comment: 15 pages, 8 figures. Updated to accepted versio
Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors
We present an approach to experimentally evaluate gravity gradient noise, a
potentially limiting noise source in advanced interferometric gravitational
wave (GW) detectors. In addition, the method can be used to provide sub-percent
calibration in phase and amplitude of modern interferometric GW detectors.
Knowledge of calibration to such certainties shall enhance the scientific
output of the instruments in case of an eventual detection of GWs. The method
relies on a rotating symmetrical two-body mass, a Dynamic gravity Field
Generator (DFG). The placement of the DFG in the proximity of one of the
interferometer's suspended test masses generates a change in the local
gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure
A search for kilonovae in the Dark Energy Survey
The coalescence of a binary neutron star pair is expected to produce gravitational waves (GW) and electromagnetic radiation, both of which may be detectable with currently available instruments. We describe a search for a predicted r-process optical transient from these mergers, dubbed the "kilonova" (KN), using griz broadband data from the Dark Energy Survey Supernova Program (DES-SN). Some models predict KNe to be redder, shorter-lived, and dimmer than supernovae (SNe), but the event rate of KNe is poorly constrained. We simulate KN and SN light curves with the Monte-Carlo simulation code SNANA to optimize selection requirements, determine search efficiency, and predict SN backgrounds. Our analysis of the first two seasons of DES-SN data results in 0 events, and is consistent with our prediction of 1.1 ± 0.2 background events based on simulations of SNe. From our prediction, there is a 33% chance of finding 0 events in the data. Assuming no underlying galaxy flux, our search sets 90% upper limits on the KN volumetric rate of 1.0 x 10^7 Gpc−3 yr−1 for the dimmest KN model we consider (peak i-band absolute magnitude Mi=-11.4 mag and 2.4 x 10^4 Gpc−3 yr−1 for the brightest (Mi=-16.2 mag). Accounting for anomalous subtraction artifacts on bright galaxies, these limits are ~3 times higher. This analysis is the first untriggered optical KN search and informs selection requirements and strategies for future KN searches. Our upper limits on the KN rate are consistent with those measured by GW and gamma-ray burst searches
The Dark Energy Survey view of the Sagittarius stream: discovery of two faint stellar system candidates
We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111−1341 and DES J0225+0304, are located at a heliocentric distance of ∼25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ∼1.73 kpc (DES J0111−1341) and ∼0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111−1341 are consistent with it being an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ −1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (−2.18 ≲ [Fe/H] ≲ −0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111−1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Furthermore, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite
First cosmology results using type Ia supernovae from the Dark Energy Survey: constraints on cosmological parameters
We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the literature. Our "DES-SN3YR" result from these 329 SNe Ia is based on a series of companion analyses and improvements covering SN Ia discovery, spectroscopic selection, photometry, calibration, distance bias corrections, and evaluation of systematic uncertainties. For a flat LCDM model we find a matter density Omega_m = 0.331 +_ 0.038. For a flat wCDM model, and combining our SN Ia constraints with those from the cosmic microwave background (CMB), we find a dark energy equation of state w = -0.978 +_ 0.059, and Omega_m = 0.321 +_ 0.018. For a flat w0waCDM model, and combining probes from SN Ia, CMB and baryon acoustic oscillations, we find w0 = -0.885 +_ 0.114 and wa = -0.387 +_ 0.430. These results are in agreement with a cosmological constant and with previous constraints using SNe Ia (Pantheon, JLA)
- …
