7 research outputs found

    Role of biological compartment in clogging and unclogging processes in infiltration basins

    No full text
    Les bassins d’infiltration sont de plus en plus utilisĂ©s en milieux urbains pour la rĂ©duction des eaux de ruissellement et la recharge des nappes phrĂ©atiques. Toutefois, leur fonctionnement est souvent affectĂ© par des problĂšmes de colmatage, physiques, chimiques et/ou biologiques, qui conduisent Ă  une diminution des capacitĂ©s d’infiltration et Ă  une altĂ©ration potentielle de la qualitĂ© des eaux infiltrĂ©es. Aussi, la prĂ©vention de ce risque devient-elle un enjeu majeur pour garantir la pĂ©rennitĂ© des ouvrages d’infiltration et la qualitĂ© des eaux infiltrĂ©es. Si les mĂ©canismes impliquĂ©s dans le colmatage sont dĂ©crits assez finement dans le cas des processus purement physiques ou gĂ©ochimiques, les verrous scientifiques sont encore importants pour comprendre la contribution du compartiment biologique (biofilms, vĂ©gĂ©tation, invertĂ©brĂ©s). Ce travail de thĂšse avait ainsi pour objectif de quantifier l’influence du compartiment biologique sur les processus de colmatage et de dĂ©colmatage dans des bassins d’infiltration. Pour cela, il Ă©tait composĂ© de deux grands volets : (i) le premier visait Ă  Ă©valuer la contribution relative du biofilm et de l’accumulation de particules fines sur les paramĂštres hydrodynamiques du milieu poreux support d’infiltration, ceci dans 2 bassins aux caractĂ©ristiques contrastĂ©es, (ii) le second avait pour objectif d’évaluer les potentialitĂ©s de processus Ă©cologiques (bioturbation, broutage, allĂ©lopathie) Ă  dĂ©colmater les bassins par l’introduction de macro-organismes (invertĂ©brĂ©s et macrophytes) en mĂ©socosmes ou par encagements in situ. Les rĂ©sultats ont mis en Ă©vidence le rĂŽle dĂ©terminant de la composante phototrophe des biofilms sur la dĂ©gradation de permĂ©abilitĂ© des supports d’infiltration. Un effet seuil de la biomasse phototrophe a Ă©tĂ© observĂ© sur le rayon moyen des pores hydrauliquement fonctionnels, avec pour consĂ©quences des effets non-linĂ©aires sur la permĂ©abilitĂ©. Face Ă  ce colmatage biologique, les rĂ©sultats obtenus en mĂ©socosmes ont clairement montrĂ© que la prĂ©sence de macrophytes tels que Vallisneria spiralis L. et Chara globularis L. permettait de rĂ©duire la biomasse algale par allĂ©lopathie. Par la suite, l'introduction par encagement dans un bassin d'infiltration de l’espĂšce V. spiralis a dĂ©montrĂ© sa potentialitĂ© Ă  rĂ©duire le phĂ©nomĂšne de colmatage en affectant la physiologie du biofilm algal. De plus, l'introduction du gastĂ©ropode aquatique Viviparus viviparus qui se nourrit directement du biofilm permettait de maintenir et mĂȘme d’amĂ©liorer les capacitĂ©s d’infiltration du bassin. Ces rĂ©sultats offrent des perspectives intĂ©ressantes pour le dĂ©veloppement futur de techniques d’ingĂ©nierie Ă©cologique dans la gestion et l’amĂ©lioration de la durĂ©e de vie des ouvrages d’infiltration.Infiltration basins are increasingly used in urban areas for stormwater management or groundwater recharge. However, their functions are often affected by physical, chemical and / or biological clogging, leading to a decrease in infiltration rate and a potential alteration of infiltrated water quality. The prevention of clogging is therefore becoming a major challenge to ensure the sustainability of infiltration devices and the quality of infiltrated water. Although the mechanisms involved in clogging are accurately described for purely physical and geochemical processes, scientific obstacles still prevent from understanding the contribution of biological compartment (i.e. biofilms, vegetation, invertebrates). The aim of this work was to quantify the influence of biological compartment on clogging/unclogging processes in infiltration basins. It was divided in two objectives: (i) To assess the relative contribution of biofilm and fine particle accumulation on the hydrodynamic parameters of the porous media in two basins with contrasting characteristics. (ii) To assess the potential of ecological processes (bioturbation, grazing, allelopathy) to unclog the basins, by the introduction of macro-organisms (invertebrates and macrophytes) in mesocosms or in situ enclosures. Results highlighted the critical role of the phototrophic component of biofilms on the degradation of infiltration media permeability. A threshold effect of algal biomass was observed on the hydraulically functional pore size, with non-linear consequences on the permeability. Faced with this biological clogging, the results obtained with mesocosm experiments clearly showed that the presence of the macrophytes Vallisneria spiralis L. and Chara globularis L. could reduce algal biomass by allelopathy. The introduction of V. spiralis by enclosure in an infiltration basin then demonstrated its potential to reduce the clogging by affecting algal biofilm physiology. In addition, the introduction of the aquatic gastropod Viviparus viviparus, which feeds directly on the biofilm, allowed to maintain, and even improve, the infiltration capacity of the basin. These outcomes offer interesting perspectives for the future development of ecological engineering techniques, to manage and improve the lifetime of infiltration devices

    RÎle du compartiment biologique dans les processus de colmatage et décolmatage de bassins d'infiltration

    No full text
    Infiltration basins are increasingly used in urban areas for stormwater management or groundwater recharge. However, their functions are often affected by physical, chemical and / or biological clogging, leading to a decrease in infiltration rate and a potential alteration of infiltrated water quality. The prevention of clogging is therefore becoming a major challenge to ensure the sustainability of infiltration devices and the quality of infiltrated water. Although the mechanisms involved in clogging are accurately described for purely physical and geochemical processes, scientific obstacles still prevent from understanding the contribution of biological compartment (i.e. biofilms, vegetation, invertebrates). The aim of this work was to quantify the influence of biological compartment on clogging/unclogging processes in infiltration basins. It was divided in two objectives: (i) To assess the relative contribution of biofilm and fine particle accumulation on the hydrodynamic parameters of the porous media in two basins with contrasting characteristics. (ii) To assess the potential of ecological processes (bioturbation, grazing, allelopathy) to unclog the basins, by the introduction of macro-organisms (invertebrates and macrophytes) in mesocosms or in situ enclosures. Results highlighted the critical role of the phototrophic component of biofilms on the degradation of infiltration media permeability. A threshold effect of algal biomass was observed on the hydraulically functional pore size, with non-linear consequences on the permeability. Faced with this biological clogging, the results obtained with mesocosm experiments clearly showed that the presence of the macrophytes Vallisneria spiralis L. and Chara globularis L. could reduce algal biomass by allelopathy. The introduction of V. spiralis by enclosure in an infiltration basin then demonstrated its potential to reduce the clogging by affecting algal biofilm physiology. In addition, the introduction of the aquatic gastropod Viviparus viviparus, which feeds directly on the biofilm, allowed to maintain, and even improve, the infiltration capacity of the basin. These outcomes offer interesting perspectives for the future development of ecological engineering techniques, to manage and improve the lifetime of infiltration devices.Les bassins d’infiltration sont de plus en plus utilisĂ©s en milieux urbains pour la rĂ©duction des eaux de ruissellement et la recharge des nappes phrĂ©atiques. Toutefois, leur fonctionnement est souvent affectĂ© par des problĂšmes de colmatage, physiques, chimiques et/ou biologiques, qui conduisent Ă  une diminution des capacitĂ©s d’infiltration et Ă  une altĂ©ration potentielle de la qualitĂ© des eaux infiltrĂ©es. Aussi, la prĂ©vention de ce risque devient-elle un enjeu majeur pour garantir la pĂ©rennitĂ© des ouvrages d’infiltration et la qualitĂ© des eaux infiltrĂ©es. Si les mĂ©canismes impliquĂ©s dans le colmatage sont dĂ©crits assez finement dans le cas des processus purement physiques ou gĂ©ochimiques, les verrous scientifiques sont encore importants pour comprendre la contribution du compartiment biologique (biofilms, vĂ©gĂ©tation, invertĂ©brĂ©s). Ce travail de thĂšse avait ainsi pour objectif de quantifier l’influence du compartiment biologique sur les processus de colmatage et de dĂ©colmatage dans des bassins d’infiltration. Pour cela, il Ă©tait composĂ© de deux grands volets : (i) le premier visait Ă  Ă©valuer la contribution relative du biofilm et de l’accumulation de particules fines sur les paramĂštres hydrodynamiques du milieu poreux support d’infiltration, ceci dans 2 bassins aux caractĂ©ristiques contrastĂ©es, (ii) le second avait pour objectif d’évaluer les potentialitĂ©s de processus Ă©cologiques (bioturbation, broutage, allĂ©lopathie) Ă  dĂ©colmater les bassins par l’introduction de macro-organismes (invertĂ©brĂ©s et macrophytes) en mĂ©socosmes ou par encagements in situ. Les rĂ©sultats ont mis en Ă©vidence le rĂŽle dĂ©terminant de la composante phototrophe des biofilms sur la dĂ©gradation de permĂ©abilitĂ© des supports d’infiltration. Un effet seuil de la biomasse phototrophe a Ă©tĂ© observĂ© sur le rayon moyen des pores hydrauliquement fonctionnels, avec pour consĂ©quences des effets non-linĂ©aires sur la permĂ©abilitĂ©. Face Ă  ce colmatage biologique, les rĂ©sultats obtenus en mĂ©socosmes ont clairement montrĂ© que la prĂ©sence de macrophytes tels que Vallisneria spiralis L. et Chara globularis L. permettait de rĂ©duire la biomasse algale par allĂ©lopathie. Par la suite, l'introduction par encagement dans un bassin d'infiltration de l’espĂšce V. spiralis a dĂ©montrĂ© sa potentialitĂ© Ă  rĂ©duire le phĂ©nomĂšne de colmatage en affectant la physiologie du biofilm algal. De plus, l'introduction du gastĂ©ropode aquatique Viviparus viviparus qui se nourrit directement du biofilm permettait de maintenir et mĂȘme d’amĂ©liorer les capacitĂ©s d’infiltration du bassin. Ces rĂ©sultats offrent des perspectives intĂ©ressantes pour le dĂ©veloppement futur de techniques d’ingĂ©nierie Ă©cologique dans la gestion et l’amĂ©lioration de la durĂ©e de vie des ouvrages d’infiltration

    The potential control of benthic biofilm growth by macrophytes—A mesocosm approach

    No full text
    International audienceShallow lakes, ponds and wetlands are often colonized by high densities of photoautotrophic micro- organisms at their water–sediment interfaces. However, excessive growth of benthic biofilm may threaten ecosystem functioning. Under these conditions, ecological engineering solutions based on macrophyte introduction may be an efficient way to prevent biofilm development through biotic interactions (competition for light, nutrient and/or light, allelopathic effects). Therefore, the aim of this study was to evaluate the role of several macrophytes on biofilms developed at the water–sediment interface of sand filltration systems. Four species of allelopathic aquatic macrophytes common in European floodplains were selected: Vallisneria spiralis (L.), Berula erecta (Huds.) Coville, Ceratophyllum demersum (L.) and Chara globularis (L.). They were introduced in outdoor mesocosms filled with sandy sediments colonized by benthic biofilms. Monitoring was carried out for six weeks, with sampling of the 0–1 cm layer in each mesocosm at the beginning and end of the experiment. Our results revealed a significant loss of biofilm algal biomass in treatments with V. spiralis and C. globularis. We also measured an inhibitory effect of C. globularis on the development of filamentous algae in the water column. These results demonstrate that the allelopathic activities of certain macrophytes could potentially prevent the excessive development of benthic biofilms in shallow lakes and wetlands

    Ecological Engineering Approaches to Improve Hydraulic Properties of Infilltration Basins Designed for Groundwater Recharge

    No full text
    International audienceABSTRACT: Infiltltration systems are increasingly used in urban areas for groundwater recharge. The reduction of sediment permeability by physical and/or biological processes is a major problem in management of infiltration systems often requiring expensive engineering operations for hydraulic performance maintenance. To reduce these costs and for the sake of sustainable development, we proposed to evaluate the ability of ecological engineering approaches to reduce the biological clogging of infiltration basins. A 36-day field-scale experiment using enclosures was performed to test the influences of abiotic (light reduction by shading) and biotic (introduction of the macrophyte Vallisneria spiralis (L.) or the gastropod Viviparus viviparus (Linnaeus, 1758)) treatments to limit benthic biofilm biomass and to maintain or even increase hydraulic performances. We coupled biological characterization of sediment (algal biomass, bacterial abundance, total organic carbon, total nitrogen, microbial enzymatic activity, photosynthetic activity, and photosystem II efficiency) with hydraulic conductivity measurements to assess the e␣ects of treatments on sediment permeability. The grazer Viviparus viviparus significantly reduced benthic biofilm biomass and enhanced hydraulic conductivity. The other treatments did not produce signficant changes in hydraulic conductivity although Vallisneria spiralis affected photosynthetic activity of biofilm. Finally, our results obtained with Viviparus viviparus are promising for the development of ecological engineering solutions to prevent biological fouling in infiltration systems

    Coupling hydraulic and biological measurements highlights the key influence of algal biofilm on infiltration basin performance

    No full text
    International audienceInfiltration basins are increasingly used in urban areas for flood protection, groundwater recharge and storm water disposal. However, their operation is often affected by clogging, leading to degraded infiltration. The aim of this work was to evaluate the respective influences of sediment deposition and biofilm biomass on the deterioration of hydraulic performances in two infiltration basins used for groundwater recharge. Samples were collected by coring in the two basins. Grain size distribution (with and without organic matter), bacterial and algal biomasses, and microbial activity were measured at three depths from the soil surface (0-1cm, 2-3cm and 10-14cm). In parallel, in situ single-ring infiltration tests were performed before and after removal of the top layer (0-1cm). The results showed considerably reduced permeability due to clogging of the top sedimentary layer in the two basins. The highest reduction of permeability was measured in the basin colonized by the largest algal biomass. The proportions of fine mineral particles (<63 mu m) were comparable in the two basins and could not explain their differences in saturated hydraulic conductivities. In addition, the relationships between biological and hydraulic parameters highlighted a threshold effect of algal biomass on the structure of the pore network, possibly explaining the decrease in infiltration. This original link between hydraulic and microbial characteristics suggests that algal biofilm growth had a major impact on the hydraulic performance of the infiltration basins. Copyright (c) 2013 John Wiley & Sons, Ltd

    Ecological Engineering Approaches to Improve Hydraulic Properties of Infiltration Basins Designed for Groundwater Recharge

    No full text
    Infiltration systems are increasingly used in urban areas for groundwater recharge. The reduction of sediment permeability by physical and/or biological processes is a major problem in management of infiltration systems often requiring expensive engineering operations for hydraulic performance maintenance. To reduce these costs and for the sake of sustainable development, we proposed to evaluate the ability of ecological engineering approaches to reduce the biological clogging of infiltration basins. A 36-day field-scale experiment using enclosures was performed to test the influences of abiotic (light reduction by shading) and biotic (introduction of the macrophyte <i>Vallisneria spiralis</i> (L.) or the gastropod <i>Viviparus viviparus</i> (Linnaeus, 1758)) treatments to limit benthic biofilm biomass and to maintain or even increase hydraulic performances. We coupled biological characterization of sediment (algal biomass, bacterial abundance, total organic carbon, total nitrogen, microbial enzymatic activity, photosynthetic activity, and photosystem II efficiency) with hydraulic conductivity measurements to assess the effects of treatments on sediment permeability. The grazer <i>Viviparus viviparus</i> significantly reduced benthic biofilm biomass and enhanced hydraulic conductivity. The other treatments did not produce significant changes in hydraulic conductivity although <i>Vallisneria spiralis</i> affected photosynthetic activity of biofilm. Finally, our results obtained with <i>Viviparus viviparus</i> are promising for the development of ecological engineering solutions to prevent biological fouling in infiltration systems
    corecore