1,334 research outputs found
Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms
In agglomerative hierarchical clustering, pair-group methods suffer from a
problem of non-uniqueness when two or more distances between different clusters
coincide during the amalgamation process. The traditional approach for solving
this drawback has been to take any arbitrary criterion in order to break ties
between distances, which results in different hierarchical classifications
depending on the criterion followed. In this article we propose a
variable-group algorithm that consists in grouping more than two clusters at
the same time when ties occur. We give a tree representation for the results of
the algorithm, which we call a multidendrogram, as well as a generalization of
the Lance and Williams' formula which enables the implementation of the
algorithm in a recursive way.Comment: Free Software for Agglomerative Hierarchical Clustering using
Multidendrograms available at
http://deim.urv.cat/~sgomez/multidendrograms.ph
The use of geoscience methods for aquatic forensic searches
There have been few publications on the forensic search of water and fewer still on the use of geoforensic techniques when exploring aqueous environments. Here we consider what the nature of the aqueous environment is, what the forensic target(s) may be, update the geoforensic search assets we may use in light of these, and provide a search strategy that includes multiple exploration assets. Some of the good practice involved in terrestrial searches has not been applied to water to-date, water being seen as homogenous and without the complexity of solid ground: this is incorrect and a full desktop study prior to searching, with prioritized areas, is recommended. Much experimental work on the decay of human remains is focused on terrestrial surface deposition or burial, with less known about the nature of this target in water, something which is expanded upon here, in order to deploy the most appropriate geoforensic method in water-based detection. We include case studies where detecting other forensic targets have been searched for; from metal (guns, knives) to those of a non-metallic nature, such as submerged barrels/packages of explosives, drugs, contraband and items that cause environmental pollution. A combination of the consideration of the environment, the target(s), and both modern and traditional search devices, leads to a preliminary aqueous search strategy for forensic targets. With further experimental research and criminal/humanitarian casework, this strategy will continue to evolve and improve our detection of forensic targets
The Race Between Stars and Quasars in Reionizing Cosmic Hydrogen
The cosmological background of ionizing radiation has been dominated by
quasars once the Universe aged by ~2 billion years. At earlier times (redshifts
z>3), the observed abundance of bright quasars declined sharply, implying that
cosmic hydrogen was reionized by stars instead. Here, we explain the physical
origin of the transition between the dominance of stars and quasars as a
generic feature of structure formation in the concordance LCDM cosmology. At
early times, the fraction of baryons in galaxies grows faster than the maximum
(Eddington-limited) growth rate possible for quasars. As a result, quasars were
not able to catch up with the rapid early growth of stellar mass in their host
galaxies.Comment: 5 pages, 1 figure, Accepted for publication in JCA
Modelling Clock Synchronization in the Chess gMAC WSN Protocol
We present a detailled timed automata model of the clock synchronization
algorithm that is currently being used in a wireless sensor network (WSN) that
has been developed by the Dutch company Chess. Using the Uppaal model checker,
we establish that in certain cases a static, fully synchronized network may
eventually become unsynchronized if the current algorithm is used, even in a
setting with infinitesimal clock drifts
Dependence of direct detection signals on the WIMP velocity distribution
The signals expected in WIMP direct detection experiments depend on the
ultra-local dark matter distribution. Observations probe the local density,
circular speed and escape speed, while simulations find velocity distributions
that deviate significantly from the standard Maxwellian distribution. We
calculate the energy, time and direction dependence of the event rate for a
range of velocity distributions motivated by recent observations and
simulations, and also investigate the uncertainty in the determination of WIMP
parameters. The dominant uncertainties are the systematic error in the local
circular speed and whether or not the MW has a high density dark disc. In both
cases there are substantial changes in the mean differential event rate and the
annual modulation signal, and hence exclusion limits and determinations of the
WIMP mass. The uncertainty in the shape of the halo velocity distribution is
less important, however it leads to a 5% systematic error in the WIMP mass. The
detailed direction dependence of the event rate is sensitive to the velocity
distribution. However the numbers of events required to detect anisotropy and
confirm the median recoil direction do not change substantially.Comment: 21 pages, 7 figures, v2 version to appear in JCAP, minor change
Plasmonic excitations in noble metals: The case of Ag
The delicate interplay between plasmonic excitations and interband
transitions in noble metals is described by means of {\it ab initio}
calculations and a simple model in which the conduction electron plasmon is
coupled to the continuum of electron-hole pairs. Band structure effects,
specially the energy at which the excitation of the -like bands takes place,
determine the existence of a subthreshold plasmonic mode, which manifests
itself in Ag as a sharp resonance at 3.8 eV. However, such a resonance is not
observed in the other noble metals. Here, this different behavior is also
analyzed and an explanation is provided.Comment: 9 pages, 8 figure
The transfer of diatoms from freshwater to footwear materials: An experimental study assessing transfer, persistence, and extraction methods for forensic reconstruction
In recent years there has been growing interest in environmental forms of trace evidence, and ecological trace evidence collected from footwear has proved valuable within casework. Simultaneously, there has been growing awareness of the need for empirical experimentation to underpin forensic inferences. Diatoms are unicellular algae, and each cell (or ‘frustule’) consists of two valves which are made of silica, a robust material that favours their preservation both in sediments and within forensic scenarios. A series of experiments were carried out to investigate the transfer and persistence of diatoms upon common footwear materials, a recipient surface that has historically been overlooked by studies of persistence. The effectiveness of two novel extraction techniques (jet rinsing, and heating and agitation with distilled water) was compared to the established extraction technique of hydrogen peroxide digestion, for a suite of five common footwear materials: canvas, leather, and ‘suede’ (representing upper materials), and rubber and polyurethane (representing sole materials). It was observed that the novel extraction technique of heating and agitation with distilled water did not extract fewer diatom valves, or cause increased fragmentation of valves, when compared to peroxide digestion, suggesting that the method may be viable where potentially hazardous chemical reactions may be encountered with the peroxide digestion method.
Valves could be extracted from all five footwear materials after 3 min of immersion, and more valves were extracted from the rougher, woven upper materials than the smoother sole materials. Canvas yielded the most valves (a mean of 2511/cm2) and polyurethane the fewest (a mean of 15/cm2). The persistence of diatoms on the three upper materials was addressed with a preliminary pilot investigation, with ten intervals sampled between 0 and 168 h. Valves were seen to persist in detectable quantities after 168 h on all three upper materials. However, some samples produced slides with no valves, and the earliest time after which no diatom valves were found was 4 h after the transfer. Analysis of the particle size distributions over time, by image analysis, suggests that the retention of diatoms may be size-selective; after 168 h, no particles larger than 200 μm2 could be found on the samples of canvas, and > 95% of the particles on the samples of suede were less than or equal to 200 μm2. A pilot investigation into the effects of immersion interval was carried out upon samples of canvas. Greater numbers of valves were extracted from the samples with longer immersion intervals, but even after 30 s, > 500 valves could be recovered per cm2, suggesting that footwear may be sampled for diatoms even if the contact with a water body may have been brief. These findings indicate that, if the variability within and between experimental runs can be addressed, there is significant potential for diatoms to be incorporated into the trace analysis of footwear and assist forensic reconstructions
High-Speed Cylindrical Collapse of Two Perfect Fluids
In this paper, the study of the gravitational collapse of cylindrically
distributed two perfect fluid system has been carried out. It is assumed that
the collapsing speeds of the two fluids are very large. We explore this
condition by using the high-speed approximation scheme. There arise two cases,
i.e., bounded and vanishing of the ratios of the pressures with densities of
two fluids given by . It is shown that the high-speed approximation
scheme breaks down by non-zero pressures when are bounded
below by some positive constants. The failure of the high-speed approximation
scheme at some particular time of the gravitational collapse suggests the
uncertainity on the evolution at and after this time. In the bounded case, the
naked singularity formation seems to be impossible for the cylindrical two
perfect fluids. For the vanishing case, if a linear equation of state is used,
the high-speed collapse does not break down by the effects of the pressures and
consequently a naked singularity forms. This work provides the generalisation
of the results already given by Nakao and Morisawa [1] for the perfect fluid.Comment: 11 pages, 1 figure, accepted for publication in Gen. Rel. Gra
- …
