442 research outputs found

    Ricci Solitons and Einstein-Scalar Field Theory

    Full text link
    B List has recently studied a geometric flow whose fixed points correspond to static Ricci flat spacetimes. It is now known that this flow is in fact Ricci flow modulo pullback by a certain diffeomorphism. We use this observation to associate to each static Ricci flat spacetime a local Ricci soliton in one higher dimension. As well, solutions of Euclidean-signature Einstein gravity coupled to a free massless scalar field with nonzero cosmological constant are associated to shrinking or expanding Ricci solitons. We exhibit examples, including an explicit family of complete expanding solitons which can be thought of as a Ricci flow for a complete Lorentzian metric. The possible generalization to Ricci-flat stationary metrics leads us to consider an alternative to Ricci flow.Comment: 17 pages, 1 figure; Revised version (organizational changes, other minor revisions and corrections, citations corrected and added), to appear in CQ

    Mean Curvature Flow on Ricci Solitons

    Full text link
    We study monotonic quantities in the context of combined geometric flows. In particular, focusing on Ricci solitons as the ambient space, we consider solutions of the heat type equation integrated over embedded submanifolds evolving by mean curvature flow and we study their monotonicity properties. This is part of an ongoing project with Magni and Mantegazzawhich will treat the case of non-solitonic backgrounds \cite{a_14}.Comment: 19 page

    PSRs J0248+6021 and J2240+5832: Young Pulsars in the Northern Galactic Plane. Discovery, Timing, and Gamma-ray observations

    Get PDF
    Pulsars PSR J0248+6021 (rotation period P=217 ms and spin-down power Edot = 2.13E35 erg/s) and PSR J2240+5832 (P=140 ms, Edot = 2.12E35 erg/s) were discovered in 1997 with the Nancay radio telescope during a northern Galactic plane survey, using the Navy-Berkeley Pulsar Processor (NBPP) filter bank. GeV gamma-ray pulsations from both were discovered using the Fermi Large Area Telescope. Twelve years of radio and polarization data allow detailed investigations. The two pulsars resemble each other both in radio and in gamma-ray data. Both are rare in having a single gamma-ray pulse offset far from the radio peak. The high dispersion measure for PSR J0248+6021 (DM = 370 pc cm^-3) is most likely due to its being within the dense, giant HII region W5 in the Perseus arm at a distance of 2 kpc, not beyond the edge of the Galaxy as obtained from models of average electron distributions. Its high transverse velocity and the low magnetic field along the line-of-sight favor this small distance. Neither gamma-ray, X-ray, nor optical data yield evidence for a pulsar wind nebula surrounding PSR J0248+6021. The gamma-ray luminosity for PSR J0248+6021 is L_ gamma = (1.4 \pm 0.3)\times 10^34 erg/s. For PSR J2240+5832, we find either L_gamma = (7.9 \pm 5.2) \times 10^34 erg/s if the pulsar is in the Outer arm, or L_gamma = (2.2 \pm 1.7) \times 10^34 erg/s for the Perseus arm. These luminosities are consistent with an L_gamma ~ sqrt(Edot) rule. Comparison of the gamma-ray pulse profiles with model predictions, including the constraints obtained from radio polarization data, favor emission in the far magnetosphere. These two pulsars differ mainly in their inclination angles and acceleration gap widths, which in turn explains the observed differences in the gamma-ray peak widths.Comment: 13 pages, Accepted to Astronomy & Astrophysic

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Control of the Intracellular Redox State by Glucose Participates in the Insulin Secretion Mechanism

    Get PDF
    Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)(CAPES) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazi

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Pep1, a Secreted Effector Protein of Ustilago maydis, Is Required for Successful Invasion of Plant Cells

    Get PDF
    The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1, that is essential for penetration. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures. However, Δpep1 mutants arrest during penetration of the epidermal cell and elicit a strong plant defense response. Using Affymetrix maize arrays, we identified 116 plant genes which are differentially regulated in Δpep1 compared to wild type infections. Most of these genes are related to plant defense. By in vivo immunolocalization, live-cell imaging and plasmolysis approaches, we detected Pep1 in the apoplastic space as well as its accumulation at sites of cell-to-cell passages. Site-directed mutagenesis identified two of the four cysteine residues in Pep1 as essential for function, suggesting that the formation of disulfide bridges is crucial for proper protein folding. The barley covered smut fungus Ustilago hordei contains an ortholog of pep1 which is needed for penetration of barley and which is able to complement the U. maydis Δpep1 mutant. Based on these results, we conclude that Pep1 has a conserved function essential for establishing compatibility that is not restricted to the U. maydis / maize interaction

    Comparison of two dependent within subject coefficients of variation to evaluate the reproducibility of measurement devices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The within-subject coefficient of variation and intra-class correlation coefficient are commonly used to assess the reliability or reproducibility of interval-scale measurements. Comparison of reproducibility or reliability of measurement devices or methods on the same set of subjects comes down to comparison of dependent reliability or reproducibility parameters.</p> <p>Methods</p> <p>In this paper, we develop several procedures for testing the equality of two dependent within-subject coefficients of variation computed from the same sample of subjects, which is, to the best of our knowledge, has not yet been dealt with in the statistical literature. The Wald test, the likelihood ratio, and the score tests are developed. A simple regression procedure based on results due to Pitman and Morgan is constructed. Furthermore we evaluate the statistical properties of these methods via extensive Monte Carlo simulations. The methodologies are illustrated on two data sets; the first are the microarray gene expressions measured by two plat- forms; the Affymetrix and the Amersham. Because microarray experiments produce expressions for a large number of genes, one would expect that the statistical tests to be asymptotically equivalent. To explore the behaviour of the tests in small or moderate sample sizes, we illustrated the methodologies on data from computer-aided tomographic scans of 50 patients.</p> <p>Results</p> <p>It is shown that the relatively simple Wald's test (WT) is as powerful as the likelihood ratio test (LRT) and that both have consistently greater power than the score test. The regression test holds its empirical levels, and in some occasions is as powerful as the WT and the LRT.</p> <p>Conclusion</p> <p>A comparison between the reproducibility of two measuring instruments using the same set of subjects leads naturally to a comparison of two correlated indices. The presented methodology overcomes the difficulty noted by data analysts that dependence between datasets would confound any inferences one could make about the differences in measures of reliability and reproducibility. The statistical tests presented in this paper have good properties in terms of statistical power.</p

    Computational models in plant-pathogen interactions: the case of Phytophthora infestans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phytophthora infestans </it>is a devastating oomycete pathogen of potato production worldwide. This review explores the use of computational models for studying the molecular interactions between <it>P. infestans </it>and one of its hosts, <it>Solanum tuberosum</it>.</p> <p>Modeling and conclusion</p> <p>Deterministic logistics models have been widely used to study pathogenicity mechanisms since the early 1950s, and have focused on processes at higher biological resolution levels. In recent years, owing to the availability of high throughput biological data and computational resources, interest in stochastic modeling of plant-pathogen interactions has grown. Stochastic models better reflect the behavior of biological systems. Most modern approaches to plant pathology modeling require molecular kinetics information. Unfortunately, this information is not available for many plant pathogens, including <it>P. infestans</it>. Boolean formalism has compensated for the lack of kinetics; this is especially the case where comparative genomics, protein-protein interactions and differential gene expression are the most common data resources.</p

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    corecore