248 research outputs found

    Chromosomal Variations in the Earwig, Anisolabis Annuleipes Lucas

    Get PDF

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    Degenerations of ideal hyperbolic triangulations

    Full text link
    Let M be a cusped 3-manifold, and let T be an ideal triangulation of M. The deformation variety D(T), a subset of which parameterises (incomplete) hyperbolic structures obtained on M using T, is defined and compactified by adding certain projective classes of transversely measured singular codimension-one foliations of M. This leads to a combinatorial and geometric variant of well-known constructions by Culler, Morgan and Shalen concerning the character variety of a 3-manifold.Comment: 31 pages, 11 figures; minor changes; to appear in Mathematische Zeitschrif

    A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions

    Get PDF
    Scintillating crystal detector may offer some potential advantages in the low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed near the core of Nuclear Power Station II in Taiwan is being constructed for the studies of electron-neutrino scatterings and other keV-MeV range neutrino interactions. The motivations of this detector approach, the physics to be addressed, the basic experimental design, and the characteristic performance of prototype modules are described. The expected background channels and their experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method

    Multidimensional quantum solitons with nondegenerate parametric interactions: Photonic and Bose-Einstein condensate environments

    Get PDF
    We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings. This can be applied to treat photonic chi((2)) and chi((3)) interactions, and interactions in atomic Bose-Einstein condensates or quantum Fermi gases, describing coherent molecule formation together with a-wave scattering. The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding energies than chi((3)) quantum solitons, and the resulting effects could potentially be experimentally tested in highly nonlinear optical parametric media or interacting matter-wave systems. N-particle quantum solitons and the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-Einstein condensates (BEC's) are given, where we predict the possibility of forming coupled BEC solitons in three space dimensions, and analyze superchemistry dynamics

    A cyclic universe with colour fields

    Full text link
    The topology of the universe is discussed in relation to the singularity problem. We explore the possibility that the initial state of the universe might have had a structure with 3-Klein bottle topology, which would lead to a model of a nonsingular oscillating (cyclic) universe with a well-defined boundary condition. The same topology is assumed to be intrinsic to the nature of the hypothetical primitive constituents of matter (usually called preons) giving rise to the observed variety of elementary particles. Some phenomenological implications of this approach are also discussed.Comment: 21 pages, 9 figures; v.4: final versio
    corecore