5,024 research outputs found
The role of protein hydrolysates for exercise-induced skeletal muscle recovery and adaptation:a current perspective
The protein supplement industry is expanding rapidly and estimated to have a multi-billion market worth. Recent research has centred on understanding how the manufacturing processes of protein supplements may impact muscle recovery and remodeling. The hydrolysed forms of protein undergo a further heating extraction process during production which may contribute to amino acids (AA) appearing in circulation at a slightly quicker rate, or greater amplitude, than the intact form. Whilst the relative significance of the rate of aminoacidemia to muscle protein synthesis is debated, it has been suggested that protein hydrolysates, potentially through the more rapid delivery and higher proportion of di-, tri- and smaller oligo-peptides into circulation, are superior to intact non-hydrolysed proteins and free AAs in promoting skeletal muscle protein remodeling and recovery. However, despite these claims, there is currently insufficient evidence to support superior muscle anabolic properties compared with intact non-hydrolysed proteins and/or free AA controls. Further research is warranted with appropriate protein controls, particularly in populations consuming insufficient amounts of protein, to support and/or refute an important muscle anabolic role of protein hydrolysates. The primary purpose of this review is to provide the reader with a current perspective on the potential anabolic effects of protein hydrolysates in individuals wishing to optimise recovery from, and maximise adaptation to, exercise training
The intrinsic stiffness of human trabecular meshwork cells increases with senescence.
Dysfunction of the human trabecular meshwork (HTM) plays a central role in the age-associated disease glaucoma, a leading cause of irreversible blindness. The etiology remains poorly understood but cellular senescence, increased stiffness of the tissue, and the expression of Wnt antagonists such as secreted frizzled related protein-1 (SFRP1) have been implicated. However, it is not known if senescence is causally linked to either stiffness or SFRP1 expression. In this study, we utilized in vitro HTM senescence to determine the effect on cellular stiffening and SFRP1 expression. Stiffness of cultured cells was measured using atomic force microscopy and the morphology of the cytoskeleton was determined using immunofluorescent analysis. SFRP1 expression was measured using qPCR and immunofluorescent analysis. Senescent cell stiffness increased 1.88±0.14 or 2.57±0.14 fold in the presence or absence of serum, respectively. This was accompanied by increased vimentin expression, stress fiber formation, and SFRP1 expression. In aggregate, these data demonstrate that senescence may be a causal factor in HTM stiffening and elevated SFRP1 expression, and contribute towards disease progression. These findings provide insight into the etiology of glaucoma and, more broadly, suggest a causal link between senescence and altered tissue biomechanics in aging-associated diseases
Forest management and wildfire risk in inland northwest
This brief reports the results of a mail survey of forest landowners in northeastern Oregon conducted in the fall of 2012 by the Communities and Forests in Oregon (CAFOR) Project at the University of Colorado and the University of New Hampshire in cooperation with Oregon State University College of Forestry Extension. The mail survey--a follow-up to a telephone survey conducted for the counties of Baker, Union, and Wallowa in the fall of 2011 -was administered to understand who constituted forest landowners in these three coun¬ties and their perceptions about forest management on both public and private land, as well as risks to forests in the area and the actions they have taken to reduce those risks. The respondents indicated that they perceive wildfire as the greatest threat to their lands, and they consider cooperation with neighbors as very or extremely important for land management. Forest landowners believe public lands are managed poorly and see a greater risk of wildfire occurring on neighboring public land than on their own land. Their opinions on land management are not strongly related to background factors or ideology (for example, gender, age, political party, wealth) but may be heavily influenced by personal experience with wildfire
Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults:From Whole-Foods to Isolated Ingredients
Preserving skeletal muscle mass and functional capacity is essential for healthy ageing. Transient periods of disuse and/or inactivity in combination with sub-optimal dietary intake have been shown to accelerate the age-related loss of muscle mass and strength, predisposing to disability and metabolic disease. Mechanisms underlying disuse and/or inactivity-related muscle deterioration in the older adults, whilst multifaceted, ultimately manifest in an imbalance between rates of muscle protein synthesis and breakdown, resulting in net muscle loss. To date, the most potent intervention to mitigate disuse-induced muscle deterioration is mechanical loading in the form of resistance exercise. However, the feasibility of older individuals performing resistance exercise during disuse and inactivity has been questioned, particularly as illness and injury may affect adherence and safety, as well as accessibility to appropriate equipment and physical therapists. Therefore, optimising nutritional intake during disuse events, through the introduction of protein-rich whole-foods, isolated proteins and nutrient compounds with purported pro-anabolic and anti-catabolic properties could offset impairments in muscle protein turnover and, ultimately, the degree of muscle atrophy and recovery upon re-ambulation. The current review therefore aims to provide an overview of nutritional countermeasures to disuse atrophy and anabolic resistance in older individuals
Biomechanical, ultrastructural, and electrophysiological characterization of the non-human primate experimental glaucoma model.
Laser-induced experimental glaucoma (ExGl) in non-human primates (NHPs) is a common animal model for ocular drug development. While many features of human hypertensive glaucoma are replicated in this model, structural and functional changes in the unlasered portions of trabecular meshwork (TM) of laser-treated primate eyes are understudied. We studied NHPs with ExGl of several years duration. As expected, ExGl eyes exhibited selective reductions of the retinal nerve fiber layer that correlate with electrophysiologic measures documenting a link between morphologic and elctrophysiologic endpoints. Softening of unlasered TM in ExGl eyes compared to untreated controls was observed. The degree of TM softening was consistent, regardless of pre-mortem clinical findings including severity of IOP elevation, retinal nerve fiber layer thinning, or electrodiagnostic findings. Importantly, this softening is contrary to TM stiffening reported in glaucomatous human eyes. Furthermore, microscopic analysis of unlasered TM from eyes with ExGl demonstrated TM thinning with collapse of Schlemm's canal; and proteomic analysis confirmed downregulation of metabolic and structural proteins. These data demonstrate unexpected and compensatory changes involving the TM in the NHP model of ExGl. The data suggest that compensatory mechanisms exist in normal animals and respond to elevated IOP through softening of the meshwork to increase outflow
Naval History by Conspiracy Theory: The British Admiralty before the First World War and the Methodology of Revisionism
Revisionist interpretations of British naval policy in the Fisher era claim that an elaborate smoke screen was created to hide the Royal Navy’s real policies; while documents showing the true goals were systematically destroyed. By asserting this, revisionists are able to dismiss those parts of the documentary record that contradict their theories, while simultaneously excusing the lack of evidence for their theories by claiming it has been destroyed. This article shows that this methodology is misleading and untenable
Evaluating Aster Satellite Imagery And Gradient Modeling For Mapping And Characterizing Wildland Fire Fuels
Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite and gradient modeling for mapping fuel layers for fire behavior modeling within FARSITE. An empirical model, based upon field data and spectral information from an ASTER image, was employed to test the efficacy of ASTER for mapping and characterizing canopy closure and crown bulk density. Surface fuel models (NFFL 1-13) were mapped using a classification tree based upon three gradient layers; potential vegetation type, cover type, and structural stage
Headache Diagnosis in Primary Care
Introduction: Doctors in primary care are responsible for diagnosing and managing patients with headache, but frequently lack confidence in doing so. We aimed to compare Family Practitioners’ (FPs) diagnosis of headaches to classification based on a symptom questionnaire, and to describe how classification links to other important clinical features. Methods: This was an observational study of patients attending primary care doctors for headache. Main outcome measures: Patients completed a questionnaire including the Headache Impact Test, the Migraine Disability Assessment Score, the Hospital Anxiety and Depression Scale, the Illness Perceptions Questionnaire, a satisfaction scale, a service use inventory and a symptom questionnaire rated by two Practitioners with Special Interest (PSIs) in Headache. Results: 255 patients completed questionnaires. There was low agreement between FP diagnosis and classification using the symptom questionnaire. FPs frequently did not use the diagnosis migraine, when patient reported symptoms which justified this. FPs did not classify patients with ≥15 days of headache separately as chronic daily headache (CDH), and this could be because the classification system used does not have that code. Patients classified as CDH using the symptom questionnaire reported more disability, more symptoms of anxiety and depression (HADS), more service use, and less satisfaction with FP care. Conclusion: Patients, who present with headache in primary care, tend to receive non-specific diagnoses. Having a system that would allow separate classification of people with headache of ≥ 15 days a month might help FPs to explore and address associated features with patients in terms of disability, psychological co-morbidity and cost, and improve satisfaction with care
Pathways for nutrient loss to water with emphasis on phosphorus
Teagasc wishes to acknowledge the support of the Environmental Research Technological
Development and Innovation (ERTDI) Programme under the Productive Sector Operational
Programme which was financed by the Irish Government under the National Development
Plan 2000-2006.End of project reportThe main objective of this project was to study phosphorus (P) loss from agricultural land under a range of conditions in Ireland, to quantify the main factors influencing losses and make recommendations on ways to reduce these losses. This report is a synthesis of the main conclusions and recommendations from the results of the studies. The final reports from the individual sub-projects in this project are available from the EPA (www.epa.ie).Environmental Protection Agenc
The long-term evolution of the spin, pulse shape, and orbit of the accretion-powered millisecond pulsar SAX J1808.4-3658
We present a 7 yr timing study of the 2.5 ms X-ray pulsar SAX J1808.4-3658,
an X-ray transient with a recurrence time of ~2 yr, using data from the Rossi
X-ray Timing Explorer covering 4 transient outbursts (1998-2005). We verify
that the 401 Hz pulsation traces the spin frequency fundamental and not a
harmonic. Substantial pulse shape variability, both stochastic and systematic,
was observed during each outburst. Analysis of the systematic pulse shape
changes suggests that, as an outburst dims, the X-ray "hot spot" on the pulsar
surface drifts longitudinally and a second hot spot may appear. The overall
pulse shape variability limits the ability to measure spin frequency evolution
within a given X-ray outburst (and calls previous nudot measurements of this
source into question), with typical upper limits of |nudot| < 2.5x10^{-14} Hz/s
(2 sigma). However, combining data from all the outbursts shows with high (6
sigma) significance that the pulsar is undergoing long-term spin down at a rate
nudot = (-5.6+/-2.0)x10^{-16} Hz/s, with most of the spin evolution occurring
during X-ray quiescence. We discuss the possible contributions of magnetic
propeller torques, magnetic dipole radiation, and gravitational radiation to
the measured spin down, setting an upper limit of B < 1.5x10^8 G for the
pulsar's surface dipole magnetic field and and Q/I < 5x10^{-9} for the
fractional mass quadrupole moment. We also measured an orbital period
derivative of Pdot = (3.5+/-0.2)x10^{-12} s/s. This surprising large Pdot is
reminiscent of the large and quasi-cyclic orbital period variation observed in
the so-called "black widow" millisecond radio pulsars, supporting speculation
that SAX J1808.4-3658 may turn on as a radio pulsar during quiescence. In an
appendix we derive an improved (0.15 arcsec) source position from optical data.Comment: 22 pages, 10 figures; accepted for publication in Ap
- …