897 research outputs found

    Tunnel shotcrete lining for hydroelectric projects in British Columbia

    Get PDF
    In British Columbia (BC), Canada, the primary source of power supply is hydroelectricity. The BC government, through its crown corporation, BC Hydro, has been working with private companies to provide sustainable and renewable energy. Private companies are building hydroelectric projects throughout the province of BC. Innergex has been constructing three hydroelectric projects; two are in the Upper Lilllooet area, which is about 250 km north of Vancouver and 80km north of Whistler and the third is in the Big Silver area, which is about 250 km east of Vancouver and 50 km north of Harrison Lake. All of these tunnels are hard rock and have been constructed by the drill and blast method. At the beginning of the projects, dry-mix shotcrete was applied based on the contractor’s previous underground project experience. Wet-mix shotcrete was subsequently introduced as a trial method. The contractor was impressed with its productivity and performance and consequently adopted it as the primary shotcrete placement method. Dry-mix steel fiber reinforced shotcrete continued to be used for special ground conditions. The construction schedule was reduced significantly by using wet-mix shotcrete, with resultant substantial cost savings. The wet-mix shotcrete was initially reinforced with wire mesh and hand-applied. Shortly after, the tunnel lining method was changed to the use of robotic sprayed macrosynthetic fiber reinforced wet-mix shotcrete. A silica fume modified shotcrete mixture was designed and trial shot. Tests results met the project specification requirements for tunnel construction. The wet-mix macrosynthetic fiber reinforced shotcrete was placed, since July 2013, using pre-bagged materials supplied from Vancouver and mixed on site. Later, the contractor set up a dry-batch concrete batch plant on site and started batching shotcrete using local aggregates. The shotcrete mixture was qualified for use on the project by testing for compressive strength, boiled absorption and volume of permeable voids, and flexural toughness based on use of the round determinate panel to ASTM C1550. The effect on shotcrete performance of different addition rates of alkali-free accelerator was tested in trials. An addition rate of 6% alkali-free accelerator by mass of cement was selected and used. Shotcrete nozzlemen were trained with a specially designed shotcrete training program. All shotcrete nozzlemen were qualified to shoot a basic Level I, and a more challenging Level II, for shotcrete with reinforcing steel or lattice girders. The construction quality control tests results for the project from August 2013 to December 2016 demonstrated that the shotcrete quality consistently met the project specification requirements. The projects were completed ahead of schedule because of productivity gains achieved from using wet-mix macrosynthetic fiber reinforced shotcrete. The contractors developed proper skills and techniques for application of wet-mix macrosynthetic fiber reinforced shotcrete applied by robotic sprayers with zero safety incidents or accident

    Compression ultrasonography for false femoral artery aneurysms: Hypocoagulability is a cause of failure

    Get PDF
    Objectives:false femoral artery aneurysm is an occasional complication of percutaneous cardiovascular radiological procedures. Compression ultrasonography causes thrombosis non-invasively, reducing need for operative intervention. The technique fails in a proportion of cases. Analysis was undertaken to identify causes of failure.Design:prospective open study.Materials and Methods:patients presenting with false femoral artery aneurysm since 1984 were identified from a computerised database (BIPAS). Since 1993 compression ultrasonography has been performed as first line treatment according to a standard protocol. Prospectively collected ultrasonographic data and case notes were reviewed to identify causes of failed compression.Results:false femoral artery aneurysm occurred as a complication in 32/26 687 (0.12%) cardiovascular radiological procedures. Eighteen aneurysms were treated by compression. The technique was successful in 11/18 (61%) cases but primary failure occurred in seven cases. Six out of seven had bleeding abnormalities (Chi-squared analysis with Yates correction 10.55, p=0.0012), four were anticoagulated and compression was subsequently successful following reversal of warfarin therapy in three of these patients. In 4/18 cases surgical repair was necessary.Conclusions:compression ultrasonography is an effective treatment of false femoral aneurysms, however, hypocoagulability is a significant cause of failure. For patients in whom anticoagulation cannot be reversed, primary surgical repair should be considered

    Model for nucleation in GaAs homoepitaxy derived from first principles

    Full text link
    The initial steps of MBE growth of GaAs on beta 2-reconstructed GaAs(001) are investigated by performing total energy and electronic structure calculations using density functional theory and a repeated slab model of the surface. We study the interaction and clustering of adsorbed Ga atoms and the adsorption of As_2 molecules onto Ga atom clusters adsorbed on the surface. The stable nuclei consist of bound pairs of Ga adatoms, which originate either from dimerization or from an indirect interaction mediated through the substrate reconstruction. As_2 adsorption is found to be strongly exothermic on sites with a square array of four Ga dangling bonds. Comparing two scenarios where the first As_2 gets incorporated in the incomplete surface layer, or alternatively in a new added layer, we find the first scenario to be preferable. In summary, the calculations suggest that nucleation of a new atomic layer is most likely on top of those surface regions where a partial filling of trenches in the surface has occurred before.Comment: 8 pages, 14 figures, Submitted to Phys. Rev. B (December 15, 1998). Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Simulations of neutron background in a time projection chamber relevant to dark matter searches

    Full text link
    Presented here are results of simulations of neutron background performed for a time projection chamber acting as a particle dark matter detector in an underground laboratory. The investigated background includes neutrons from rock and detector components, generated via spontaneous fission and (alpha, n) reactions, as well as those due to cosmic-ray muons. Neutrons were propagated to the sensitive volume of the detector and the nuclear recoil spectra were calculated. Methods of neutron background suppression were also examined and limitations to the sensitivity of a gaseous dark matter detector are discussed. Results indicate that neutrons should not limit sensitivity to WIMP-nucleon interactions down to a level of (1 - 3) x 10^{-8} pb in a 10 kg detector.Comment: 27 pages (total, including 3 tables and 11 figures). Accepted for publication in Nuclear Instruments and Methods in Physics Research - Section

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    Neutron background in large-scale xenon detectors for dark matter searches

    Full text link
    Simulations of the neutron background for future large-scale particle dark matter detectors are presented. Neutrons were generated in rock and detector elements via spontaneous fission and (alpha,n) reactions, and by cosmic-ray muons. The simulation techniques and results are discussed in the context of the expected sensitivity of a generic liquid xenon dark matter detector. Methods of neutron background suppression are investigated. A sensitivity of 10−9−10−1010^{-9}-10^{-10} pb to WIMP-nucleon interactions can be achieved by a tonne-scale detector.Comment: 35 pages, 13 figures, 2 tables, accepted for publication in Astroparticle Physic

    Vortex states in 2D superconductor at high magnetic field in a periodic pinning potential

    Full text link
    The effect of a periodic pinning array on the vortex state in a 2D superconductor at low temperatures is studied within the framework of the Ginzburg-Landau approach. It is shown that attractive interaction of vortex cores to a commensurate pin lattice stabilizes vortex solid phases with long range positional order against violent shear fluctuations. Exploiting a simple analytical method, based on the Landau orbitals description, we derive a rather detailed picture of the low temperatures vortex state phase diagram. It is predicted that for sufficiently clean samples application of an artificial periodic pinning array would enable one to directly detect the intrinsic shear stiffness anisotropy characterizing the ideal vortex lattice.Comment: 8 pages, 5 figure
    • …
    corecore