3,927 research outputs found

    Crown Ether-Modified Clays and their Polystyrene Nanocomposites

    Get PDF
    Crown ether-modified clays were obtained by the combination of sodium and potassium clays with crown ethers and cryptands. Polystyrene nanocomposites were prepared by bulk polymerization in the presence of these clays. The structures of nanocomposites were characterized by X-ray diffraction and transmission electron microscopy. Their thermal stability and flame retardancy were measured by thermogravimetric analysis and cone calorimetry, respectively. Nanocomposites can be formed only from the potassium clays; apparently the sodium clays are not sufficiently organophilic to enable nanocomposite formation. The onset temperature of the degradation is higher for the nanocomposites compared to virgin polystyrene, and the peak heat release rate is decreased by 25% to 30%

    A spatial variation model of white matter microstructure

    Get PDF
    In this study, we introduce a new technique to model the variation of microstructural parameters across speci c brain regions. We use a simple model of di usion in each voxel, but model the variation of parameters across the region using penalised splines. We t the whole region model directly to the di usion-weighted signals. We test the tech- nique on the mid-sagittal section of the corpus callosum (CC) using a di usion MRI data set with distinct age groups. The method detects di erences and separates the groups

    Investigation of nanodispersion in polystyrene-montmorillonite nanocomposites by solid state NMR

    Get PDF
    Nanocomposites result from combinations of materials with vastly different properties in the nanometer scale. These materials exhibit many unique properties such as improved thermal stability, reduced flammability, and improved mechanical properties. Many of the properties associated with polymer–clay nanocomposites are a function of the extent of exfoliation of the individual clay sheets or the quality of the nanodispersion. This work demonstrates that solid-state NMR can be used to characterize, quantitatively, the nanodispersion of variously modified montmorillonite (MMT) clays in polystyrene (PS) matrices. The direct influence of the paramagnetic Fe3, embedded in the aluminosilicate layers of MMT, on polymer protons within about 1 nm from the clay surfaces creates relaxation sources, which, via spin diffusion, significantly shorten the overall proton longitudinal relaxation time (T1 H). Deoxygenated samples were used to avoid the particularly strong contribution to the T1 H of PS from paramagnetic molecular oxygen. We used T1 H as an indicator of the nanodispersion of the clay in PS. This approach correlated reasonably well with X-ray diffraction and transmission electron microscopy (TEM) data. A model for interpreting the saturation-recovery data is proposed such that two parameters relating to the dispersion can be extracted. The first parameter, f, is the fraction of the potentially available clay surface that has been transformed into polymer–clay interfaces. The second parameter is a relative measure of the homogeneity of the dispersion of these actual polymer–clay interfaces. Finally, a quick assay of T1 H is reported for samples equilibrated with atmospheric oxygen. Included are these samples as well as 28 PS/MMT nanocomposite samples prepared by extrusion. These measurements are related to the development of highthroughput characterization techniques. This approach gives qualitative indications about dispersion; however, the more time-consuming analysis, of a few deoxygenated samples from this latter set, offers significantly greater insight into the clay dispersion. A second, probably superior, rapid-analysis method, applicable to oxygen-containing samples, is also demonstrated that should yield a reasonable estimate of the f parameter. Thus, for PS/MMT nanocomposites, one has the choice of a less complete NMR assay of dispersion that is significantly faster than TEM analysis, versus a slower and more complete NMR analysis with sample times comparable to TEM, information rivaling that of TEM, and a substantial advantage that this is a bulk characterization method. © 2003 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 41: 3188–3213, 200

    Data preparation and interannotator agreement: BioCreAtIvE Task 1B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We prepared and evaluated training and test materials for an assessment of text mining methods in molecular biology. The goal of the assessment was to evaluate the ability of automated systems to generate a list of unique gene identifiers from PubMed abstracts for the three model organisms Fly, Mouse, and Yeast. This paper describes the preparation and evaluation of answer keys for training and testing. These consisted of lists of normalized gene names found in the abstracts, generated by adapting the gene list for the full journal articles found in the model organism databases. For the training dataset, the gene list was pruned automatically to remove gene names not found in the abstract; for the testing dataset, it was further refined by manual annotation by annotators provided with guidelines. A critical step in interpreting the results of an assessment is to evaluate the quality of the data preparation. We did this by careful assessment of interannotator agreement and the use of answer pooling of participant results to improve the quality of the final testing dataset.</p> <p>Results</p> <p>Interannotator analysis on a small dataset showed that our gene lists for Fly and Yeast were good (87% and 91% three-way agreement) but the Mouse gene list had many conflicts (mostly omissions), which resulted in errors (69% interannotator agreement). By comparing and pooling answers from the participant systems, we were able to add an additional check on the test data; this allowed us to find additional errors, especially in Mouse. This led to 1% change in the Yeast and Fly "gold standard" answer keys, but to an 8% change in the mouse answer key.</p> <p>Conclusion</p> <p>We found that clear annotation guidelines are important, along with careful interannotator experiments, to validate the generated gene lists. Also, abstracts alone are a poor resource for identifying genes in paper, containing only a fraction of genes mentioned in the full text (25% for Fly, 36% for Mouse). We found that there are intrinsic differences between the model organism databases related to the number of synonymous terms and also to curation criteria. Finally, we found that answer pooling was much faster and allowed us to identify more conflicting genes than interannotator analysis.</p

    Synthesis of inorganic dyes based on plasmonic silver nanoparticles for the visible and infrared regions of the spectrum

    Get PDF
    The effect of various technological factors during the multistage synthesis of plasmonic silver particles in aqueous solutions on nanoparticle size, morphology, and color is studied. The synthesized suspensions are found to contain tabular silver nanoparticles of hexagonal and triangular shape. The foundations of the technology for synthesizing stable silver colloids with a high silver concentration for the visible and nearinfrared regions of the spectrum are developed

    Content-based microarray search using differential expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the expansion of public repositories such as the Gene Expression Omnibus (GEO), we are rapidly cataloging cellular transcriptional responses to diverse experimental conditions. Methods that query these repositories based on gene expression content, rather than textual annotations, may enable more effective experiment retrieval as well as the discovery of novel associations between drugs, diseases, and other perturbations.</p> <p>Results</p> <p>We develop methods to retrieve gene expression experiments that differentially express the same transcriptional programs as a query experiment. Avoiding thresholds, we generate differential expression profiles that include a score for each gene measured in an experiment. We use existing and novel dimension reduction and correlation measures to rank relevant experiments in an entirely data-driven manner, allowing emergent features of the data to drive the results. A combination of matrix decomposition and <it>p</it>-weighted Pearson correlation proves the most suitable for comparing differential expression profiles. We apply this method to index all GEO DataSets, and demonstrate the utility of our approach by identifying pathways and conditions relevant to transcription factors Nanog and FoxO3.</p> <p>Conclusions</p> <p>Content-based gene expression search generates relevant hypotheses for biological inquiry. Experiments across platforms, tissue types, and protocols inform the analysis of new datasets.</p

    Are they ‘worth their weight in gold’? Sport for older adults: benefits and barriers of their participation for sporting organisations

    Get PDF
    The ageing global population has led to an increased focus on health for older adults. However, older adults have not been a specific priority for some sporting organisations (SOs). Thus, there is an emerging opportunity for this age group to be considered within international sport policy. The aim of this study was to understand the benefits and barriers that SOs encounter when engaging older adults. Eight focus group interviews (n = 49) were held with representatives of Australian national sporting organisations (NSOs), and older adults who were either sport club or non-sport club members. The socioecological model domains, interpersonal, organisational and policy, were used as a framework for thematic analysis, and organisational capacity building concepts were utilised to explain the findings. Common perceived benefits included interpersonal benefits (intergenerational opportunities and role models) and organisational benefits (volunteering, financial contributions and maximised facility usage) for engaging older adults. Common perceived barriers included interpersonal barriers (competing priorities and perceived societal expectations), organisational barriers (lack of appropriate playing opportunities, lack of facility access and lack of club capacity) and policy barriers (strategic organisational focus on children and elite sport and risk management). Whilst participation in sport is not common for older adults, their involvement can be invaluable for sport clubs. It is not anticipated that any policy focus on older adults will significantly increase active participation for this age group. However, any increase in older adults’ sport participation either through actively playing, supporting family and friends and/or volunteering will contribute to the positive health of individuals, sport clubs and the community.Peer reviewedFinal Accepted Versio

    Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating

    Get PDF
    Catheter associated urinary tract infections (CA-UTIs) are the most common health related infections world wide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infections, new materials that resist bacterial biofilm formation are needed. A composite catheter material, consisting of bulk PDMS coated with a novel bacterial biofilm resistant polyacrylate (EGDPEA–co-DEGMA) has been proposed. The coated material shows excellent bacterial resistance when compared to commercial catheter materials but delamination of the coatings under mechanical stress presents a challenge. In this work, the use of oxygen plasma treatment to improve the wettability and reactivity of the PDMS catheter material and improve adhesion with the EGDPEA–co-DEGMA coating has been investigated. Argon Cluster 3D-imaging Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) has been used to probe the buried adhesive interface between the EGDPEA–co-DEGMA coating and the treated PDMS. ToF-SIMS analysis was performed in both dry and frozen-hydrated states and results were compared to mechanical tests. From the ToF-SIMS data we have been able to observe the presence of PDMS, silicates, salt particles, cracks and water at the adhesive interface. In the dry catheters, low molecular weight PDMS oligomers at the interface were associated with poor adhesion. When hydrated, the hydrophilic silicates attracted water to the interface and led to easy delamination of the coating. The best adhesion results, under hydrated conditions, were obtained using a combination of 5 min O2 plasma treatment and silane primers. Cryo-ToF-SIMS analysis of the hydrated catheter material showed that the bond between the primed PDMS catheter and the EGDPEA–co-DEGMA coating was stable in the presence of water. The resulting catheter material was resisted Escherichia coli and Proteus mirabilis biofilm colonization by up to 95 % compared with uncoated PDMS after 10 days of continuous bacterial exposure and had the mechanical properties necessary for use as a urinary catheter
    corecore