170 research outputs found

    The VMC survey - XXVI. Structure of the Small Magellanic Cloud from RR Lyrae stars

    Get PDF
    We present results from the analysis of 2997 fundamental mode RR Lyrae variables located in the Small Magellanic Cloud (SMC). For these objects, near-infrared time series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and visual light curves from the OGLE IV (Optical Gravitational Lensing Experiment IV) survey are available. In this study, the multi-epoch Ks-band VMC photometry was used for the first time to derive intensity-averaged magnitudes of the SMC RR Lyrae stars. We determined individual distances to the RR Lyrae stars from the near-infrared period–absolute magnitude–metallicity (⁠PMKsZ⁠) relation, which has some advantages in comparison with the visual absolute magnitude–metallicity (MV–[Fe/H]) relation, such as a smaller dependence of the luminosity on interstellar extinction, evolutionary effects and metallicity. The distances we have obtained were used to study the three-dimensional structure of the SMC. The distribution of the SMC RR Lyrae stars is found to be ellipsoidal. The actual line-of-sight depth of the SMC is in the range 1–10 kpc, with an average depth of 4.3 ± 1.0 kpc. We found that RR Lyrae stars in the eastern part of the SMC are affected by interactions of the Magellanic Clouds. However, we do not see a clear bimodality observed for red clump stars, in the distribution of RR Lyrae star

    An approach for the calculation of one-loop effective actions, vacuum energies, and spectral counting functions

    Full text link
    In this paper, we provide an approach for the calculation of one-loop effective actions, vacuum energies, and spectral counting functions and discuss the application of this approach in some physical problems. Concretely, we construct the equations for these three quantities; this allows us to achieve them by directly solving equations. In order to construct the equations, we introduce shifted local one-loop effective actions, shifted local vacuum energies, and local spectral counting functions. We solve the equations of one-loop effective actions, vacuum energies, and spectral counting functions for free massive scalar fields in Rn\mathbb{R}^{n}, scalar fields in three-dimensional hyperbolic space H3H_{3} (the Euclidean Anti-de Sitter space AdS3AdS_{3}), in H3/ZH_{3}/Z (the geometry of the Euclidean BTZ black hole), and in S1S^{1}, and the Higgs model in a (1+1)(1+1)-dimensional finite interval. Moreover, in the above cases, we also calculate the spectra from the counting functions. Besides exact solutions, we give a general discussion on approximate solutions and construct the general series expansion for one-loop effective actions, vacuum energies, and spectral counting functions. In doing this, we encounter divergences. In order to remove the divergences, renormalization procedures are used. In this approach, these three physical quantities are regarded as spectral functions in the spectral problem.Comment: 37 pages, no figure. This is an enlarged and improved version of the paper published in JHE

    The VMC Survey – XLII. Near-infrared period–luminosity relations for RR Lyrae stars and the structure of the Large Magellanic Cloud

    Get PDF
    We present results from an analysis of ∼29 000 RR Lyrae stars located in the Large Magellanic Cloud (LMC). For these objects, near-infrared time-series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and optical data from the Optical Gravitational Lensing Experiment (OGLE) IV survey and the Gaia Data Release 2 catalogue of confirmed RR Lyrae stars were exploited. Using VMC and OGLE IV magnitudes we derived period–luminosity (PL), period–luminosity–metallicity (PLZ), period–Wesenheit (PW), and period–Wesenheit–metallicity (PWZ) relations in all available bands. More that  7000 RR Lyrae were discarded from the analysis because they appear to be overluminous with respect to the PL relations. The \\PL_K_mathrmsPL\_\\{K\_\\{\\mathrm\\{s\\}\\}\\}\\ relation was used to derive individual distance to \\sim22,000\\{\\sim\\}22\\, 000\\ RR Lyrae stars, and study the three-dimensional structure of the LMC. The distribution of the LMC RR Lyrae stars is ellipsoidal with the three axis S1 = 6.5 kpc, S2 = 4.6 kpc, and S3 = 3.7 kpc, inclination i = 22 ± 4° relative to the plane of the sky and position angle of the line of nodes θ = 167 ± 7° (measured from north to east). The north-eastern part of the ellipsoid is closer to us and no particular associated substructures are detected and neither any metallicity gradient

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation

    Get PDF
    The postharvest evolution of Penjar tomatoes has been studied in four accessions representative of the variability of the varietal type. The long-term shelf life of these materials, which carry the alc allele, was confirmed with 31.2-59.1% of commercial fruits after 6 months of effective conservation at room temperature and a limited loss of weight (21.1-27.9%). Aroma in Penjar tomatoes is differentiated from other tomato varieties by a characteristic 'sharp-floral' aroma descriptor. The evolution of the 'sharp-floral' aroma during postharvest showed a peak of intensity at 2 months of postharvest, though in one accession a delay of 2 months in this response was detected. Out of 25 volatiles analysed, including main and background notes, a reverse iPLS variable selection revealed that the main candidates behind this aromatic behaviour are ¿-terpineol, trans-2-hexenal, 6-methyl-5-hepten-2-one, trans-2-octenal, ¿-pinene, ß-ionone, 2 + 3-methylbutanol and phenylacetaldehyde. Between harvest and 2 months postharvest, most compounds reduced considerably their concentration, while the intensity of the 'sharp-floral' descriptor increased, which means that probably there is a rearrangement of the relative concentrations among volatiles that may lead to masking/unmasking processes. © 2011 Springer-Verlag.This work was supported by grants from the Conselleria de Agricultura, Pesca y Alimentacio de la Comunidad Valenciana, the Fundacion de la Comunidad Valenciana para la Investigacion Agroalimentaria (AGROALIMED) and from the Departament d'Agricultura, Alimentacio i Accio Rural (DAR) de la Generalitat de Catalunya.Casals Missio, J.; Cebolla Cornejo, J.; Rosello Ripolles, S.; Beltran Arandes, J.; Casanas, F.; Nuez Viñals, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology. 233(2):331-342. doi:10.1007/s00217-011-1517-6S3313422332Petro-Turza M (1987) Flavor of tomato and tomato products. Food Rev Int 2:309–351Butterry RG (1993) Quantitative and sensory aspects of flavor of tomato and other vegetables and fruits. In: Acree TE, Teranishi R (eds) Flavor science: sensible principles and techniques. American Chemical Society, WashingtonGoff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815–819Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee MJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896Zanor MI, Rambla JL, Chaïb J, Steppa A, Medina A, Granell A, Fernie AR, Causse M (2009) Metabolic characterization of loci affecting sensory attributes allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. J Exp Bot 60:2139–2154Ortiz-Serrano P, Gil JV (2010) Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening. J Agric Food Chem 58:1106–1114Boukobza F, Taylor AJ (2002) Effect of postharvest treatment on flavour volatiles of tomatoes. Postharvest Biol Technol 25:321–331Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346Giovannoni JJ, Tanksley SD, Vrebalov J, Noensie E (2004) NOR gene for use in manipulation of fruit quality and ethylene response. US Patent No 5,234,834 issued 13 July 2004McGlasson WB, Last JH, Shaw KJ, Meldrum SK (1987) Influence of the non-ripening mutants rin and nor on the aroma of tomato fruit. HortScience 22:632–634Baldwin EA, Scott JW, Shewmaker CK, Schuch W (2000) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. HortScience 35:1013–1022Kovács K, Rupert CF, Tikunov Y, Graham N, Bradley G, Seymour GB, Bovy AG, Grierson D (2009) Effect of pleiotropic ripening mutations on flavour volatile biosynthesis. Phytochemistry 70:1003–1008Gao HY, Zhu BZ, Zhu HL, Zhang YL, Xie YH, Li YC, Luo YB (2007) Effect of suppression of ethylene biosynthesis on flavour products in tomato fruits. Russ J Plant Physiol 54:80–88Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, Tadmor Y (2005) Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J Agric Food Chem 53:3142–3148Kopeliovitch E, Mizrahi Y, Rabinowitch D, Kedar N (1980) Physiology of the mutant alcobaca. Physiol Plant 48:307–311Casals J, Pacual L, Cañizares J, Cebolla-Cornejo J, Casañas F, Nuez F (2011) Genetic basis of long shelf life and variability into Penjar tomato. Genet Resour Crop Evol. doi: 10.1007/s10722-011-9677-6Kuzyomenskii AV (2007) Effect of cumulative polymery of tomato keeping life genes. Cytol Genet 41:268–275Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852Moretti CL, Baldwin EA, Sargent SA, Huber DJ (2002) Internal bruising alters aroma volatile profiles in tomato fruit tisúes. HortScience 37:378–382Buttery RG, Teranishi R, Ling LC (1987) Fresh tomato aroma volatiles: a qualitative study. J Agric Food Chem 35:540–544Romero del Castillo R, Valero J, Casañas F, Costell E (2008) Training validation and maintenance of a panel to evaluate the texture of dry beans (Phaseolus vulgaris L.). J Sens Stud 23:303–319Beltran J, Serrano E, López FJ, Peruga A, Valcárcel M, Roselló S (2006) Comparison of two quantitative GC-MS methods for analysis of tomato aroma based on purge-and-trap and on solid-phase microextraction. Anal Bioanal Chem 385:1255–1264Martens H, Naes T (1989) Multivariate Calibration. Wiley, New YorkWise BM, Gallagher NB, Bro R, Shaver JM, Windig W, Koch RS (2006) Chemometrics tutorial for PLS_Toolbox and Solo. Eigenvector Research, WenatcheeHongsoongnern P, Chambers E (2008) A lexicon for texture and flavor characteristics of fresh and processed tomatoes. J Sens Stud 23:583–599Norgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB (2000) Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Appl Spectrosc 54:413–419Javanmardi J, Kubota C (2006) Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol Technol 41:151–155Kader AA (1986) Effects of postharvest handling procedures on tomato quality. Acta Hort 190:209–222Maul F, Sargent SA, Sims CA, Baldwin EA, Balaban MO, Huber DJ (2000) Tomato flavor and aroma quality as affected by storage temperature. J Food Sci 65:1228–1237Krumbein A, Auerswald H (1998) Characterization of aroma volatiles in tomatoes by sensory analyses. Nahrung 6:S395–S399Tandon KS, Baldwin EA, Shewfelt RL (2000) Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum Mill.) as affected by the medium of evaluation. Postharvest Biol Technol 20:261–268Cebolla-Cornejo J, Roselló S, Valcárcel M, Serrano E, Beltran J, Nuez F (2011) Evaluation of genotype and environment effects on taste and aroma flavour components of Spanish fresh tomato varieties. J Agric Food Chem 59:2440–2450Carbonell-Barrachina AA, Agustí A, Ruiz JJ (2006) Analysis of flavor volatile compounds by dynamic headspace in traditional and hybrid cultivars of Spanish tomatoes. Eur Food Res Technol 222:536–542Alonso A, Vázquez-Araújo L, García-Martínez S, Ruiz JJ, Carbonell Barrachina AA (2009) Volatile compounds of traditional and virus-resistant breeding lines of Muchamiel tomatoes. Eur Food Res Technol 230:315–323Liggett E, Drake MA, Delwiche JF (2008) Impact of flavor attributes on consumer liking of Swiss cheese. J Dairy Sci 91:466–476Ortiz-Serrano P, Gil JV (2007) Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on three tomato varieties (Solanum lycopersicum L.). J Agric Food Chem 55:9170–9176Xu Y, Barringer S (2010) Comparison of tomatillo and tomato volatile compounds in the headspace by selected ion flow tube mass spectrometry (SIFT-MS). J Food Sci 75:C268–C273Berna AZ, Lammertyn J, Saevels S, Di Natale C, Nicolai BM (2004) Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sens Actuators B Chem 97:324–333Baldwin EA, Scott JW, Einstein MA, Malundo TMM, Carr BT, Shewfelt RL, Tandon KS (1998) Relationship between sensory and instrumental analysis for tomato flavor. J Am Soc Hortic Sci 12:906–915Krumbein A, Peters P, Brückner B (2004) Flavour compounds and a quantitative descriptive analysis of tomatoes (Lycopersicon esculentum Mill.) of different cultivars in short-term storage. Postharvest Biol Technol 32:15–2
    corecore