13,075 research outputs found

    Calculation of the three-dimension, supersonic, inviscid, steady flow past an arrow-winged airframe, part 1

    Get PDF
    A detailed description of the procedure used to compute three dimensional, supersonic, inviscid, steady flows past airframes is given. No limitations are imposed on the geometry of the airplane. Suitable computational grids are generated by automatic conformal mappings. The equations of motion, with pressure, entropy, and velocity direction as basic unknowns, are written and discretized in the computational space. Special rules to approximate derivatives are given. Boundary points are treated by a modified method of characteristics

    Numerical studies of 2-dimensional flows

    Get PDF
    A formulation of the lambda scheme for the analysis of two dimensional inviscid, compressible, unsteady transonic flows is presented. The scheme uses generalized Riemann variables to determine the appropriate two point, one sided finite difference approximation for each derivative in the unsteady Euler equations. These finite differences are applied at the predictor and corrector levels with shock updating at each level. The weaker oblique shocks are captured, but strong near normal shocks are fitted into the flow using the Rankine-Hugoniot relations. This code is demonstrated with a numerical example of a duct flow problem with developing normal and oblique shock waves. The technique is implemented in a code which has been made efficient by streamlining to a minimal number of operations and by eliminating branch statements. The scheme is shown to provide an accurate analysis of the flow, including formation, motions, and interactions of shocks; the results obtained on a relatively coarse mesh are comparable to those obtained by other methods on much finer meshes

    An old integration scheme for compressible flows revisited, refurbished and put to work

    Get PDF
    A scheme for integrating the Euler equations of compressible flow in any hyperbolic case is presented. The scheme relies on the concept of characteristics but is strictly a finite difference scheme. Improvements in accuracy and physical consistence due to the scheme are discussed and results of its application to complex flows are shown

    Grid generation using classical techniques

    Get PDF
    A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed

    Experiments on initial and boundary conditions

    Get PDF
    Effects of three different models for the treatment of subsonic boundary conditions, applied to the problem of flow in a channel with a bump, are discussed. A preliminary discussion of the numerical treatment of the corners is presented

    Fast Euler solver for steady, 1-dimensional flows

    Get PDF
    A numerical technique to solve the Euler equations for steady, one dimensional flows is presented. The technique is essentially implicit, but is structured as a sequence of explicit solutions for each Riemann variable separately. Each solution is obtained by integrating in the direction prescribed by the propagation of the Riemann variables. The technique is second-order accurate. It requires very few steps for convergence, and each step requires a minimal number of operations. Therefore, it is three orders of magnitude more efficient than a standard time-dependent technique. The technique works very well for transonic flows and provides shock fitting with errors as small as 0.001. Results are presented for subsonic problems. Errors are evaluated by comparison with exact solutions

    Strong and Electro-Weak Supersymmetric Corrections to Single Top Processes at the Large Hadron Collider

    Full text link
    We present the one-loop corrections originating from Quantum Chromo-Dynamics (QCD) and Electro-Weak (EW) interactions of Supersymmetric (SUSY) origin within the Minimal Supersymmetric Standard Model (MSSM) to the single-top processes bq -> tq' and qbar q' -> tbar b. We illustrate their impact onto top quark observables accessible at the Large Hadron Collider (LHC) in the 't+jet' final state, such as total cross section, several differential distributions and left-right plus forward-backward asymmetries. We find that in many instances these effects can be observable for planned LHC energies and luminosities, quite large as well as rather sensitive to several MSSM parameters.Comment: 22 pages, 10 figures; added a brief comment on the dependence of results on the value of top mass; corrected typo

    Six-Fermion Calculation of Intermediate-mass Higgs Boson Production at Future e+ee^+ e^- Colliders

    Get PDF
    The production of an intermediate-mass Higgs boson in processes of the kind e+e6e^+ e^- \to 6 fermions at the energies of future linear colliders is studied. The recently developed and fully automatic algorithm/code ALPHA is used to compute the tree-level scattering amplitudes for the reactions e+eμ+μτνˉτudˉ,μ+μeνˉeudˉe^+ e^- \to \mu^+ \mu^- \tau^- \bar\nu_{\tau} u \bar d, \mu^+ \mu^- e^- \bar\nu_{e} u \bar d. The code has been interfaced with the Monte Carlo program HIGGSPV/WWGENPV, properly adapted to 6-fermion production, in order to provide realistic results, both in the form of cross sections and event samples at the partonic level. Phenomenological results, that incorporate the effects of initial-state radiation and beamstrahlung, are shown and commented, emphasizing the potentials of full six-fermion calculations for precise background evaluation as well as for detailed studies of the fundamental properties of the Higgs particle.Comment: 31 pages, LaTeX, 15 eps low-resolution figures include

    Intrinsic scatter of caustic masses and hydrostatic bias: An observational study

    Get PDF
    All estimates of cluster mass have some intrinsic scatter and perhaps some bias with true mass even in the absence of measurement errors for example caused by cluster triaxiality and large scale structure. Knowledge of the bias and scatter values is fundamental for both cluster cosmology and astrophysics. In this paper we show that the intrinsic scatter of a mass proxy can be constrained by measurements of the gas fraction because masses with higher values of intrinsic scatter with true mass produce more scattered gas fractions. Moreover, the relative bias of two mass estimates can be constrained by comparing the mean gas fraction at the same (nominal) cluster mass. Our observational study addresses the scatter between caustic (i.e., dynamically estimated) and true masses, and the relative bias of caustic and hydrostatic masses. For these purposes, we used the X-ray Unbiased Cluster Sample, a cluster sample selected independently from the intracluster medium content with reliable masses: 34 galaxy clusters in the nearby (0.050<z<0.1350.050<z<0.135) Universe, mostly with 14<logM500/M14.514<\log M_{500}/M_\odot \lesssim 14.5, and with caustic masses. We found a 35\% scatter between caustic and true masses. Furthermore, we found that the relative bias between caustic and hydrostatic masses is small, 0.06±0.050.06\pm0.05 dex, improving upon past measurements. The small scatter found confirms our previous measurements of a highly variable amount of feedback from cluster to cluster, which is the cause of the observed large variety of core-excised X-ray luminosities and gas masses.Comment: A&A, in press, minor language changes from previous versio

    Higher-order QED corrections to single-W production in electron-positron collisions

    Get PDF
    Four-fermion processes with a particle lost in the beam pipe are studied at LEP to perform precision tests of the electroweak theory. Leading higher-order QED corrections to such processes are analyzed within the framework of the Structure Functions (SF) approach. The energy scale entering the QED SF is determined by inspection of the soft and collinear limit of the O(alpha) radiative corrections to the four-fermion final states, paying particular attention to the process of single-W production. Numerical predictions are shown in realistic situations for LEP experiments and compared with existing results. A Monte Carlo event generator, including exact tree-level matrix elements, vacuum polarization, higher-order leading QED corrections and anomalous trilinear gauge couplings, is presented.Comment: LaTeX (using elsart), 21 pages, 8 .ps figure
    corecore