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PART I

by

Gino Moretti
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ABSTRACT

A detailed description of the procedure used to compute three-

dimensional, supersonic, inviscid, steady flows past airframes is

given. No limitations are imposed on the geometry of the airplane.

Suitable computational grids are generated by automatic conformal map-

pings. The equations of motion, with pressure, entropy, and velocity

direction as basic unknowns, are written and discretized in the computa-

tional space. Special rules to approximate derivatives are given.

Boundary points are treated by a modified method of characteristics .

No provision is made for imbedded shocks. Description of sample geo-

metries and results of calculation will be given in Part II.
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I. INTRODUCTION

In the present Report a detailed description is given of a basic

computational program for the evaluation of three-dimensional, super-

sonic, inviscid, steady flows past airplanes. For the sake of simplicity,

no imbedded shocks are considered here. The emphasis is put instead

on how a powerful, automatic mapping technique is coupled to the fluid

mechanical analysis in order to assure a high degree of accuracy without

increasing the number of computational nodes beyond reasonable limits.

Care has been taken to describe and to code each of the three

constituents of the analysis (body geometry, mapping technique, and gas

dynamical effects) separately, to facilitate applications to dif:erent

geometries or substitution of the present set of unknowns and equations

of motion by other sets. Sections V through X contain the outline of the

code dealing with gas dynamical effects; all their statements and formulas

are unaffected by changes in the mapping technique or mapping parameters

or in the geometry of the airplane. All expressions related to the map-

ping are given in Sections XI and XII. Results of computations based on

sample geometries, and discussions will be presented in a separate

Report.

II. FRAMES OF REFERENCE

The free stream flow is assumed to be uniform, with a given

Mach number, MW . A Cartesian, orthogonal frame of reference, (x, y, t)

is defined as having the y and t-axes in the symmetry plane of the

vehicle, the t-axis lying along the fuselage. The unit vectors of the x, y,

and t-axis are called I, J and K, respectively. The free stream velocity

vector, V. , is parallel to the (y, t)-plane; the angle of attack, a, is the

angle between V. and K; therefore,

1
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V m = V,(3sin7+Kcosa)
	

(1)

In each cross-sectional plane, a complex variable, z, is defined as

z=x+iy	 (2)

A conformal mapping (details of which will be found in Section XII) defines

a one-to-one correspondence between the portion of interest of the right-

hand side of the z-plane and a portion of the right-hand side of a E -plane

where, by and large, the image of the cross-section of the airplane is

nearly circular; it is convenient, thus, to express the complex variable

C in the form:

S = 
P 0 i	 (3)

The analytic function C(z) implies that p and a are functions of

x and y, and vice versa. Such functions, in general, change from one

cross-section to another; therefore, we may write:

P = P('-'C, Y, t)	 x = x(P, 6, T)

6 = 6 (x, Y, t )	 Y = Y(P, 0 , ,r )	 (4)

T = t	 t = T

We must take good care of denoting t by another symbol, T, when con-

sidered in connection with p and B since when t changes and x,y

remain unchanged, p and 8 generally change; consequently, derivatives

with respect to t (at constant x and y) generally differ from derivatives

with respect to T (at constant p and e). Let p = b(6, T) and p = c(e, T) be the

equations of the image of the airplane body contour and of the ima ;e of the bow

shock in the C-plane. A non-conformal mapping, defined by a suitable

function of p, 6 and T:

X = X(P, 6,T)	 p = p(X, Y, T)

Y = e	 6 = Y	 (5)

T = T	 T = T

2



(8)

i	 t	 1	 1	 !

will transform the region of interest in the .right-hand side of the -plane

bounded by p = b and p = c onto a rectangle, bounded by the lines:

X = 0, corresponding to	 p = b (body)

X = 1, corresponding to P = c (bow shock)
(6)

Y = - 2 0 corresponding to e = - 2 (windward symmetry line)

Y = Z, corresponding to B = Z (leeward symmetry line)

An example of such a function, X(o, e, T) will be discussed in Section XI.

III. DERIVATIVES RELATED TO THE MAPPINGS

Let

^Lc	 iw

g-dz=Ge

be the complex derivative of C with respect to z (at t, T, T all constant);

similarly, let

(7)

cn=g d aZ =cnl +ima

From (3) and (7) it follows that

GC=C_/9_=ei(e-w)=C+iS
1 g	 IC/gI

where

C = cos(e - w) ,	 S = sin(e - w)

We introduce now the notations, V and f, for tw

functions obtained by differentiating g and C with respe

at constant x and y):

u _ 31ogp = 
ta i +itV

f = aloes = fl +ifs
dt

Recalling that

dC = a(PC0s e)	 a(p sin 0) _ 8(p Cos e)	 a(P
dz	 ax	 + i	 ax— +

and

3
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f0

a lo	 1 a o 	 ae
=- == pr+i

we obtain:
Px =	

p = C',d,

Ax = - p g	 ey=pC,

Tx = 0 ,	 Ty = 0,

Conversely, noting that

x  = - (x p Pt + xe et),

we obtain:

(14)

Pt = of.,

e t = fa	 (15)

T	 1t

YT = - (y p P t + y e e t )	 (16)

x- 1 Cp-C, x=A P °,- G x=-T ( efi	 - Ufa) oG

y p = G 8 , Ye = G c , YT = - ( g El + Cfa) G

t 
	 =0^ to=0, tT= 1

Between the two sets, (p, A, T) and (X, Y, T),	 the following relations hold:

1 Xe XTaX = X, Py X, PT = -Xp p
P

e { =0, A y =1, a	 =0 (18)

T X =O, Ty =O, TT =1

1 Py PT
X p = pX , Xe = - pX, X =T	 - PX

y p = 0 , Ye = 1	 , YT = 0 (19)

T 
	 = 0 , Te = 0 , TT = 1

By combining (17) and (18), we obtain:

4	 I
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t	 :	 i

PI Xe
xY=-G\CP^j—+S^

Xe
yY = G(-3 PXp+C^

 XT (	 PxT=- 9.
G XP_ Cf1'gf0/G

X
YT = -G gip- (3f1+Cfa^G

CxX - Ox

S
yX - GXP'

t X = 0	 f	 t y = 0 ,	 t T=	 1

The following formulae are also obtained easily:

(20)

Ge = - amp ,	 a  = Of"'' i -01 fi + ma fn 
Gp= 

p mi ,

W P = P ZAa
	 we = Gm,

a
Gx = A (Cm l + 3,n2)

wx = - o (3 Ni - Cm2)

(21)

W  = ^a - 01 fa + ma ft

GaGy = P (3^^ 1 	C^a) ,	 Gt = G V^
(22)

wy = P (Cmi + g ^Pa)	 wt = Vo

IV, IMPORTANT UNIT VECTORS

We begin this section by defining a P-line on a c=constant (physical)

cross-sectional plane as a line along which e=constant; similarly, a

e-line will be a line on the t=ronstant plane along which p=constant. The

unit vectors, f and j will be used to identify the tangents to a 0-line and

to a p-line respectively. Note that

BI+CJ	 J= 3i+Cj

By using (20 and (23) for any point,

Q=xI+yJ+t K	 (24)

we obtain:

5



"QX= 1G

X

P

(
QT = - G 

X
\p3C

—Ir
 +fi^i _G5 4 j+K

P
"

The unit vector, N, normal to an X=constant surface, is impor-

tant for the calculation of body and bow shock points. The body, indeed,

is defined by X=0 and the bow shock by X=1. In general,

N = N, i + Na j + No K= i1	 QY xQ T	(26)Q
YxQT

where Q is a point on the surface. From (25) it follows that

1	 }' 8
Ni	 N=	 a = PX Nl ,	 N3 = Nl d	 (27)

P

with

((X
	 X

d= G\XT+ X Bfa 4	 Pfi^' ^_, 1+(X
X

>	 +da 	(28)
P	 P P

In particular, at the body, from (18),

x 	 by	 XT
OXP = - —7 ,	

}XP 
= - b (Body)	 (29)

Note also that we can write by or b 8 ,	 and b or b T ,	 indifferently.

Therefore, at the body (27) and (28) take on the form;

b
Ni = 7,	 Na = - b Nl , N3 = Ni d (Body)	 (30)

d = - G(bZ+b1,fa - bfl 	 v = J1+( bb ) + d2 (Body) (31)

Similarly, at the shock,

6

K



..... ......... H	 .m.^. ^«^sz vrn...,.	 ...,	 , =vv +AI 3r ti, 9..xri Ea	 nas.):q'Csa*a+.m°e

I

j

Xe	
c 
	 XT

O–p = - c	 7-0 = - C 	 (32)

C(shock) Ni =	 Na = - cY N i	 Ns = Nid	 (33)

r ^

d=-G^cT
+c Y fa-cf1	^^^	 v=fl+%cY)+da	 (34)

Let

3(x, y, t) = 0	 (35)

define the geometry of the body in the physical space. The image of the

body in the (p, e, T) space is

p = b(e, r)	 (36)

To evaluate (30) and (31), that is the normal to the body, we need be/b

and b,r . At T=constant,

	

"A ; 0 be + xe) + gy (y p be + y P ) 0	 (37)

Conri4gvently, and using (17):

x	 y

Similarly, at e=constant,

9x(xpbT + x T ) + ry(ypbT + y T ) + Ft = 0	 (39)

and

	bT = - fa be + bfl - C' C— + dy	
(40)

x	 y

Therefore, at the body,

d- C°.  x + _ ry	 (Body)	 (41)

and (30, (31) can be replaced by the simpler expressions:

7
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e

r 1 +'! P	 C w - g °^	 Jr	 Xy	 y	 x	 t
a	 Nl =	 ,	 Ns =	 y	 ,	 Ns = v	 (Body) (42)

	

v= rX + 72 + C	 (Body)

The above formulae are general. For any particular geometry, 5 7 ,x
17y , and le must be evaluated.

V. EQUATIONS OF MOTION

Having chosen a suitable reference length, xref' the pressure,

density and temperature of the free stream are chosen as reference

pressure, density and temperature, respectively (pref' Pref' ZYref)'
V; .th p, P,Z measuring non-dimensional quantities, the equation of state

is then

p = P.'	 (43)

The reference velocity, uref' is defined by

z
uref = pref I Pref - R ref	 (44)

where R is the gas constant divided by the molecular weight of air. The

speer, of sound in the free stream, in a non-dimensional form, is then

a m = J	 (45)

The logarithm of pressure is denoted by P:

P = In p	 (46)

A non-dimensional entropy, S (which is the difference between the local

entropy and the free stream entropy divided by c v ) is related to non-

dimensional temperature and pressure by

S = Y In - (Y - 1)P 1	exp (Yyl P + YS )	 (47)

Euler's equations of motion in non-dimensional form are:

8



V • vp+Yv•V=0

Zv(V a ) - Vx 17xV+7VP=0	 (48)

V - VS = 0

With k = K, let

v = w (X + k)	 (49)

where

X = a i + rj	 (50)

and let

vl =	 I +	 J	 (51)

Note that

tj/ V • VP = w(X+k) • (v 1 P+Ptk) = w X— VI P + wPt

0 • V = vi ' [w (X+ k)] + wt = X vi w+w vl X + wt
(52)

2 v (Va ) =wvw (? + 1 ) + Z
wav i Xa+2wa(Xa)tk

-1 

Vxvx V = - w(a i w • X+wt)(X+k) +w vw(Xa +1) + wa [(Xt . X) k - Xt + XxVIxX]

therefore, (48) take the form:

w(X. v 1 P+Pt) + Y(X • v i w + wv l • X+ wt) = 0

12.	 a-
2 w2 vi Xa +w(vi w"X+wt)X+ w )(t -w XxOlxX+7^1P=0

w (vl w • j + wt) + UP  = 0

X• 01 5 + St = 0	 (53)

The third of these equations can be used to simplify the first and second

equation; finally, the following system is obtained:

9



(1 _ 21)p t +X. V I P +v7 1 • X=0

Vl X 2- X x Vi x X+ z (^i P- Pt X I+ )(t = 0	 (54)
w

)(' O 1 S+S t = 0

The third of (53) is not needed; the above system is composed of four

scalar equations for the two unknown scalar, P and S and the two-

component unknown vector, X. Once P and S are determined, 7 is

obtained from (47); the modulus of the velocity, q, is obtained from

q'=y?1(.7o-^)
	

(55)

where a0 is the (non-dimensional) stagnation temperature, and w fol-

lows from

w2(1 + 02 + r 2 ) = q2	 (56)

There are definite advantages in using (54) as a basic system of equa-

tions (instead of (48) or of equations in divergence form). Not only it

contains only four differential equations to be integrated, but it provides

a clear separation of unknowns, S on one side and P and X on the

other side, which is particularly welcome in problems where strong

entropy gradients occur (Refs. 1, Z). Another advantage of (54) stems

from the fact that Ol operates on the (x, y) plane only; therefore, it can

be expressed in terms of p and a as independent variables, and using

i and j as unit vectors. In particular, note that

10
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A

VIP = G(P
P 
i +7pej)

Y. VI P G(Cr P + 1: P
P P e

X x	 x	
P	 G

[(pr)	 (r I a j)
P

(57)

G2
-F) + Q

P	 G

G( (a cy + r n ) 1 + (a a + r ne)2	 P	 P	 P
A

t 	 [at + (wt - 
8 t )r]i + [ rt + ( e

t Wt) 0] j

These expressions can be substituted into (54); in doing it, however,

note that t also must be substituted by T, and that, for any function,

t	
+ ^

p 
Pt 

+ ^ G 
e
t 
= 

^'r 
+ pf, ^ P + fa ^ e	 (58)

Using the notations:

a
2

w2

A, G + p f,	 A,2	
P

+ fQ

(59)
BI	 G Cr + pf,	 BP

P 
+ f2

D	 2[n(1 - M I )	 a CP2 ] + f2 - vpP

and taking (21) and (22) into account, (54) become:

P +A, P
P 
+Aa 

P 0 
+ 
A PP

+ re) + 
KP 

[a(l - CO,	 0

CY T +B
I G

P 
+ B2ae+	 [- u p T 

+(G-apf,)P
P 

Crf:R Pe] - n D =0
w 2 

(60)

rT + BI r P 
+ Ba no +	 Tip T P 11 f, P

P P
+ (2 -'n f:R )Pe] + a D 0

w

S 
T 
+ BI S P + B2 Se = 0

The final form of the equations of motion is obtained by expressing the

11

I



12

1	 f

derivatives in terms of X, Y, and T, considering that, for any function,

^P _ ^X XP

^e	 Y+ ^X Xe	 (61)

^T = ^T + $ X XT

and, consequently:

T 
+ B1 ^P + Ba ^0 = ^ T + E ^X + Ba Y

(62)

^T +Al §
P

+Aa ^e = § T + C § X +Aa ^Y

where

C = X T + Aa X P + A  Xe	 E = X T + By X P + Ba Xe
(63)

With the additional notations:

L=a ( I - coi)+ n Pa

F = _ a XT + (G - a pf 1 ) XP - afa Xe
(64)

H = - T1 XT - P Tl fi X P + (p- nfa)X9

the equations to be integrated at every grid point, except on the body and

on the bow shock, are:

P T +CPX +AaP Y + KG [X P aX +P( rY +XenX +L)] =0

aT +EaX +Ba aY + Via [- a	 r^PT +FPX -afa P Y] - D = 0
w	 (65)

InT +E nX +Ba In" +-Lr- r^P T +HPX +(P - rfa)P Y] + a  = 0
w2L

ST +ESX +Ba S  = 0

VI. CH.A.RACTERISTIC EQUATION FOR BODY AND SI3OCK POINTS

Equations (65) are not suited for the numerical analysis of points

on the body and on the bow shock. A characteristic equation in an (X, T)

plane is needed; note that in the physical space the image of such a 	 I

„I
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plane is a surface almost parallel to the local velocity vector and almost

normal to either the body or the bow shock.

By multiplying the first three equations ( 65) by µ 1r " ",, and µ3i

respectively, adding, and calling X the slope of the characteristic in

the (X, T) plane ( % = dX/dT), we obtain the compatibility equation:

1{1 1 - Z (aµ2 i• rµ3)] ( PT+XPX) + 112(aT + XaX) +L13 ( rT +arX)
wa

= µl R1 + µa Ra + 113 R 3	(66)

whe re

Rl = - Aa P y - x p (ry + L)

Ra = - Bp a  + !-a fq  P  + rD
wa

Ra = - B3 rY - -La(p - rfa)PY - a 
W

In turn, a is defined by

C -	 L (F + ax)	 L (H + r1)
w	 w 

slGXp	 E-^	 0	 =0

W-P	0 E-^

that is,

(E -a)(C 	
a
2 rX

u I p (H+ rl) + X p (F+ak)] = 0

or

I
	 X

X a - 2(X T +A1 X p +Aa Xe)l +E C- wa x (FX P +H p) = 0

which, after some manipulations, yields:

a=C±0 W;t

13
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(68)
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a	 '9

s

I	 (

_ / IoX P + r oA/ + t i Xp + XA^
a
	 (70)

The lower sign and the upper sign must be used at body points

and bow shock points, respectively.

From (68), we obtain

ul =E -X

µ2 ° ,sGXP	 (71)

µs = -sycpXA

aG
µ l - a (aµ2 + rus) _ + p wh	 (72)

w

The compatibility equation (66) is then

X
+ (PT +SPX) _ ^ '.X P (Q T +% a	 A(rX) + p T + X rX)

X
+ ^ywa (oX P + p XA) * Ywj Ri - XPR2 - 

pA Ra

(73)

VII. EQUATIONS FOR BODY POINTS

At body points, the boundary condition,

	

V • N = 0	 (74)

yields
b

	6- r b + d= 0	 (75)

if (49), (50), (30) and (31) are taken into account. On the other hand, (63?

and (29) give

	

E = X 0 ( - bT + B, - B2 b Y )	 (76)

and, using (59) and (31), it is easy to see that

	

E = 0	 (77)

It is also important to note that (75) is identically satisfied for any

value of Y and T; in particular,
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aT rTT- - r(b)T - dT
_	 bY-	

by	
(78)

The compatibility equation (73) becomes

b	 b	 b
P T +SP X =F̂a	b )T - dT + ^(aX - -17Y r )- Ra+ bYR3`-' Ri

(79)
with

X_C-^a3
wst

b
It remains to provide explicit expressions for(-)̂  and dT.

T
The former is easy to write:

r l	 ((	 \
\ by /̂  = b \bYT - bYbT)	 (81)

To get the latter, we may start noting that, by (20),

dT = dt +dx xT + dy yT = dt + I I[CbT - b(Cf 1 - 3fs )] dx

+ C3 b  - b(8 fl + Cfa )] d  !	 (82)

Using d in the form ( 41), we obtain

dT = C7x6^ {7tt- d(Ct7x+8t7y+C7xt+87yt)+

+ G (Fr bT -b(Cfl -8f' )^^7xt -d(Cx7x +3x5: + C7xx +957 )]+

+I 8b T -b(8fl +Cfa)]L7yt -d(Cy9x + 8y 7y + C7xy +9S yy)^)1
^	 J

1 ^7 +d(87 -C7 )(fa - t1, 2 ) -d(C7 +87 ) +- C fix+ 8 ^y ( tt	 x	 y	 xt	 yt

+ G (LC b T _ b(C fl 8f2 )]^7xt- d(8 x - C 7y)b 8̂ ( 1 -^^i ) + C cna^- d ( C ^xx+ ° 7xy)^ +

+C8b T _b(&fl +Pfa)T'7 +d(87x-C7y)b[C(1-ml)-3r%1-d(C 7xy+87yy)T)

That is,

15
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_.	 ..	 ^	 R.	 i m e ..	 .. ,..::u	 ti'P1 ^ 4"'ss'iYV b`4	 ' MS)1 Gl	 ..°£"='F.E^^

ti

dT = °:x ` s 17tt - d(r ^xt+ 2 °:yt) + G ! r+b l _ b(^ f 1 _ 8 fa) _ 'xt" d(r Px c+ xy +

+"3bT-b(!'-f1+Vf2)- —d(('7 +"7 )7) f +
+ d bY•_ u, c _ bT.^a + f l ._a +f3 :^ 1	 (83;

Having used (79) to determine P T ,	 the last of (65) yields S and

from updated values of P and S, updated values of 5 and q2 are obtained

from (47) and (55).

Now, let
b

	v=w(r+ _ 	 (g4)

The third of (53) in the (X, Y, T) frame, with E=0, reads:

wT +B2 w1,+wrPT+(XT+0XPfl+Xefa)PX+f2PYj=0
(8.5)

If (85) is multiplied by °— and added to the third of (65) and the second of
W2

b
(65) multiplied by bY , the following equation is obtained

b	 b	 b
vT +B2 v - r(b) +Ba (b) ha w +PW P Y + Dw (a- b r) = 0

T	 Y

(86)

which can be used to update v. Note that v is the velocity component

tangent to the body in the cross-sectional plane. Its Lagrangean derivative

expressed in the (X, Y, T) frame by v 	 + Ba vI„ depends on the geometry

of t.,e body and on the Y-derivative of P only. After updating v,	 updated

values of w, a and r at the body can be obtained b;r solving (84), (56) and

(75) . One obtains:

b2-
W = ^, qz 1 + Y1 - v2	 (87)

h•• J

with v defined by (31),

16



(;/w)(by/b) - d
Cr =	 -	 (88)

1 + (b
y

 /b)"

b
r = w - a 

b	
(89)

VIII. BOW SHOCK CALCULATION

Let

=711 i+712 j+713 k	 (90)

be the unit vector normal to the. bow shock surface. The values of

711i 71 2 ,71 3 are the same. as the values of N 1 , N2, N3 defined by (33). The

velocity component normal to the shock in front of it, u" is

u"
m 

= Vm n = u„ 711 + vm 71 2 + w, 713	 (91)

where

V S sincxm

V C sinsm

V^cos a
	

(92)

If we denote by u the corresponding velocity component behind the shock,

the velocity vector, V behind the shock is:

V = Vm + (u - u"m ) n	 (93)

The Rankine -Hugo niot conditions provide the increment in P and the ratio

u/um across the shock (here P is the logarithm of pressure behind the

shock; let us keep in mind that P. = 0):

P = In + 1 + In ^u^ - Y 
2 

1 ^	 (94)

u= v'+ 11 um+ v2+
11 -::7-(95)

um

Since (94) and (95) are identically satisfied at any T,

Um

vm

wm

17
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r	 I	 ^	 1

J	 j	 f	 y	 +

um
PT =

	

	 y T umT	 (96)
CO 2

U T v+1 " v+'.1 ua u-T	 (97)
m

In turn, from (92), (9) 0 (18) and (21):

uwT = - vm W 

vm T = u„ WT 	(98)

WwT = 0

and

CTwT = Va - fa T1 + f 1 Ta + 0 Ta a
	 (99)

Therefore,

uwT = - (vm A l - um 1(2 )W T + uM i1 1 T + VI 
Ito T + w, Its T	 (100)

In all the above expressions, we will now separate c TT frum the

rest, letting first d  in the form:

d  = Cl + Ca c TT	 (101)

The values of C1 and Ca will be computed later on. It follows that

vT = Cs + C 4 c TT	 (102)

t,

	

C3 = vCcY(cY) + d C 1 ^, C4 = d C Z	 (103)
T

From (33),

1	 1911T = C , + Cs cTT , Cs = - a C3	 Cs = - a C4
v

c

v

91 3 T = C7 + CS c TT	 C7 = - i ( YY) 71, + cY i ]	 Ce = - ^ Cs
I	 T

713 
T = Cs + C-10 c TT ' Cs = Cs d + 211 C 1	 , Cl o = Ce d + 71 1 C2

(104)

18
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Then

umT = C11 + 
C17 CTT	 (105)

IC12=U
C11 = (um a - vm W1 )wT + v„ Cs + vm C7 + wm Co
	 (106)

mCe+vmCs+wmClo

From (96) and (97)

gum	 gum

1' T = C13 + C1a °TT , C13 = -2^ C'11 ,	 C14,=72 Y-rCiA
um 2	 um 2

u = C is + Cie o	 , Cis rY-1 2Y 1 1011 , Cia= (
v-1 ZY 1

 )CIO( T	 TT	 = (-Y+7 —v+ U17
1	

Y+T - Y+ua
 m

(107)

Then,

1
(/ 	

SI
\u - u./

T C17 + C1s o TT ' C17 = CIS - C31 , C1e = CI  - Cl:)l

(108)

With

v=ui+vj+wk	 (109)

it follows from (93) that

u = um + (u-um)n1

v = vm + (u-um )7la	 (110)

w = wm + (u-um)713

Therefore,

u  = C'1e + Cao oTT ' C'1e = - vm wT + C 17 n1 +(u-um 	 a )Cs 	C = C1e"1+(U,-;. ) ce

v  = Cal + Caa oTT ' C a1 = um wT + C 17 712 +(u-um)C7 	Caq = C 1enA + (u-um)Ce

w,1+ = C A3 + C'A4 °TT , C'A3 = C.7 n 3 + (u-um) C9	 , CA5 °^ C le n3 + (u-um)C1(

(111)

and
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w	 ,	

f	

1	 ,
f

T = Coo + Cca cTT	 Cae y ( C IO - '7Ca3)	 COO = 1 ( Coo - ^ CDa)

	

"T = Ca, + CD  cTT ' CD7 = I ( CDI -'' COS)	 CDs =w (Coo - "CDa)

(112)

By substitution into the compatibility egixation (73), we obtain

wX	 c
- ( C t3 +C1a c TT +aPX ) = -gym {Coo+ C Dac T .r+ a. CX -o (Cary+CascTT+X'r

^aa	 cY	 -	 cY
- lrw (a-r ^) + a A^R 1 - Ra + R3 r

which allows c TT to be computed, as follows:

c TT = D7 (Ds + Ds + 7f)	 (113)

D7 = - -1-'YwX-p	 c 	
(114)

Cia +—^ a (CDs - c Cae)

Yw X	 c
Ds = C 13 + 7ap ( Cas - ŶCa7)	 (115)

YwXc	 aX	 c
Da = ^ L- Ra + ŶR3}

+Fax,
p,N°(Q - ^ r) - 1 I	 (116)

Tf = 7 CFX + Y-Fa (6X - nYrX)J	 (117)

Having computed cTT, L  and c are obtained by successive

integrations. Once a new shock geometry, p=c(9, T), is obtained, the
A

new 71 and uW are evaluated; then, (94) and (95) can be applied to compute

P and u. The three velocity components follow from (93); therefore

o(=u/w) and r(=v/w) are made known. Finally, S is given by

u

	

S=P - Yln ^
	

(118)
U

To complete the information needed for coding the shock calculation,

we need to evaluate C 1 and Ca. From (34),
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dT= .G G T - U /'TT+cYTfa - c T fs +cYfaT-cfsT/

_- dr "'I+I ( e n +gz%a Cc,r-c(C fs . '% W) +I(3'Cs-C^PalscT-c(gfs+(If2)t

G-TT-U YT fa - c T fs) - G(cYfaT - cfsT)

= - d..' s +ĉ  N s -^s fs+"Ca faj - cTT-U(cYTf2 - c Tf s ) -

- IcY Imag (fT) -c Real (fT)^U1

Now,

fT =ft +fx x T + f  YT

(119)

_ aa log 
C +G as o[ccT -c(Cfs -Sfa)j+G -y	 r$cT-c(gfs+Cfa)y

a2 log S }G^(R)rCcT-c(Cfs-Sfa)J+G a40cT-c(ffs-Cf°)

=a2 log 
C+G of (S) F(c T - cfs -icf2)(('+ig)J

aala^^ }G^ ( d , -f) J!!. (cT -cf)_
ate

Therefore,

Cs = - dl
r

*s + ec CPs—	 ens fs +W24-1-   G ( c YT f2 - C  fl)

r•	 2	 r	 c
G ! cY	

at
Imag ate+ ^ Imag ^(y - f) (c T - c f); -

a	 r	 i
- c Real a log - Real '^(d - f)(c T - c f) r

^r	

at2	 -

Ca	
lI

(120)

(121)

IX. GENERAL OUTLINE OF ONE INTEGRATION STEP -

The equations obtained in. the preceding sections are used to

proceed from a station, t, to a station, t + At, using a predictor-corrector

integration scheme, as follows.
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i

Predictor stage

Given, original values of P, a, r , S, q2 , 5, w, c, c T , b, bY,,

b T ,	 ?, g , f,	 and it,

At all value of 8, compute cy, c Y.T' b YY , bYT•
At all value of a and 0

Compute X- and Y- derivatives of P, a, r, S (see nest section)

Compute p = mod C, X p, X 8 , X  (see Section XI)

Compute G, R, A,, Aa , B % , Bs , D, E, C, L, F, H

For all points except body and shock points, determine P T' aTO
r  and ST from (65)

For body points,compu.te R IO R.1 , Re from (67), l from (80) and

d  from (83). Then, use (79) to obtain P T , (86) to obtain v T , and

the last of (65) to obtain ST.

For shock points, compute R IO R2i R3 from (67), evaluate 711,710

and713 and compute all coefficients (C 1 through Coe).

Compute D7 , Ds, D3 and fi, and determine c TT from (113).

Update P, a, r and S at all interior points, P, v and S at all body

points, as well as c  and c, using the following rule (where § is an

arbitrar y function):

^(t + At) = ^(t) + ^T At	 (122)

Move to the station defined by t + At; compute the geometry of the

body; determine the basic parameters for a new mapping. Determine new

values of b, b Y„ b T . From the updated values of c, determine new values

of c Y ; using the updated values of c T , evaluate the new values of 711 ,718,

71s , the corresponding u. from (91) and updated values of P and u behind

the shock from (94) and (95); then use (110) to get updated values of u, v,

and w and update a and 'n accordingly. Use (118) to get an updated value

of S behind the shock. At the body, use (87), (88) and (89) with the

22
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updated values of q2 , v and b. At all points, updated values of S, q*

and w must be computed.

Symmetry conditions are now imposed where necessary. Finally,
N

the original values of P, a, r S, v, c and c  are temporarily saved.

A new computational grid (including values of g, f, co and 4) is generated.

Corrector stage

The computation is restarted as at the beginning of the predictor

stage. The geometry and the grid, however, are now those of station

t + At; and all the variables have their predicted value at t + At as well.

The updating in the corrector stage is performed using the following rule

in lieu of (122);

^(t + At) = 2 'I-	 + _F(t + Ot) + § T At]
	

(123)

values T(t + At) is the left-hand side of (122) and ^T is the T-derivative

computed in the corrector stage. A new evaluation of the body geometry

is not necessary; the computational grid, however, has to be re-evaluated

since the bow shock location may have changed slightly. The values at

the shock themselves have to be recomputed as at the end of the predictor

stage. Symmetry conditions are imposed again. Finally, the updated

values of P, a, r, S,v,c and c  are stored as initial values for a new step.

X. DISCRETIZATION OF X- AND Y- DERIVATIVES

In principle, the MacCormack scheme (3) for integrating the

equations of motion at all interior point is adopted. This is reflected by the

use of (122) and (123) at the predictor and corrector level, respectively.

In addition, whenever possible, the X- and Y- derivatives should be

approximated by 2-point differences taken, for example, forwards at the

predictor level and backwards at the corrector level.

There are several exceptions to the above rule.
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1) At body boundary points, where X=O, backwards approxima-

tions cannot be taken and are replaced by the approximation:

-2^o + 3^ 1 _ bF

^X	 DX
	 (124)

which maintains a second order accuracy if the e quations are linear

throughout the integration step (4) . Here, m  = $(i AX, Y)

2) Similarly, at bow shock boundary point°, where X=1, forward

approximations cannot be taken and are replaced by the approximation:

2^o - 3 ^1 + ^2^ X a
AX	

(125)

where ^ = ^(1 - i AX, Y) .

3) The last of (65) simply expresses the fact that entropy is

transported unaltered by the moving particles. That means that no

entropy signals travel backwards along streamlines. Consequently, no

approximations to X- or Y- derivatives are allowed which imply forward

differences of S along a streamline.

In most of the cases the rule does not have to be strictly enforced;

in other words, the violation of the physical principle produced by alter-

nating backward and forward differences (as in the MacCormack scheme)

does not produce sizable errors, so long as the entropy distribution is

smooth and essentially flat. Difficulties and inaccuracies appear, however,

when entropy layers tend to build-up ( ' ) . It is therefore advisable to adopt

the following scheme systematically:

Soo-Slo
	

Soo-Sol
Predictor level: S X --Sgncr AX

	 S Y, sgn *t __FY_

2 Soo - 3S10+S2o
	 2Soo - 3So l+ Son

Correction level: SX--sgna	 AX	 , SY ^sgnr	 7 y --

(126)
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1	 1

where

Soo = S (X , Y), S10 = S(X- "X sgn c, Y)

Spo = S(X - 2 _`X sgn c, Y) 	 (127)

So 1 = S(X, Y - P-Y sgn r) , SO; = S(X, Y - 2 AY sgn r)

At body and bow shock boundary points, the rules given at (1) and (2) above

should be used for approximating S  as well as the X-derivatives of the

other physical parameters.

4) Similarly, the terms vT, + Ba v  in (86) express the Lagrangean

derivative of v. Forward di£ferencing of v is thus forbidden and vy

should be approximated as follows:

Predictor level:

Corrector level:

with

vo - vl
v  ;^:fsgnv --y

2vo - 3v1 + va
v^,^sgnv---6 Y—

vo = v ( 0 , Y)

vl = v(0, Y - AY sgn v)

v^ = v(0, Y - 2 AY sgn;)

(128)

(129)

5) Y-derivatives at the bow shocl. boundary are conveniently

approximated by centered differences .

XI. COORDINATE NORMALIZATION AND GRID STRETCHING
ALONG p-LINES

The object of the transformation (5) is twofold. It defines a

variable X which is constant (equal to zero) along the body and also con-

stant (equal to 1) along the bow shock. In addition, it provides a stretching

of coordinates according to which evenly spaced grid points on the X-axis
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A	 ,

V,

correspond to unevenly spaced points on the p-lines. The latter property

is used to accumulate 6-lines in the vicinity of the body where a stronger

resolution is needed.

The values of the derivatives, X P , X 8 , and X T depend on the

choice of the stretching function X(p, 8, T), In this section we give an

example of such a function. If the definition of X(p, 8, T) is changed, the

definitions of X p, X 8 and X T must be changed accordingly. The rest of

the program does not need to be altered.

,I et

p = c + A tanh [a(X - 1) ]
	

(130)

with

- tan a	 (131)

Obviously, X as defined by (130) satisfied conditions (6). Different

values of a provide different (egrees of accumulation of 8-lines near

the body. To give an idea of the effect of a, let b=0, c=1. Fig. 1 plots

X vs. p for various values of a. Clearly,strong stretching effects begin

to appear for values of a larger than 2.

It is easily proven that:

X = b	 1	 (132)

X

X 8 = - tanha, (cY - b Y) + b cZ} 10	 (133)

p-c	
X

XT - ' l tangy ( c r - b 2 ) + c rl -^	 (134)
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XII. EXPLICIT COMPUTATION OF TERMS RELATED TO THE MAPPINGS -

The mapping of the z-plane onto the '.-plane, mentioned in

Section II, is performed according to the general scheme exposed in Ref.

5. In the z-plane, the "hinge-points" are denoted by h ti (R=1 through J).

In addition, hJ+1 and hJ+2 7 are the affixes of the lower and upper

intersection of the cross-sectional contour with the y-axis.

Let

zl = z	 ( 135)

and a sequence of J mappings be used, each defined by the equation:

6.
z.+1 - 1 - (z ( - hjj J

t

	

z j+1 +	
+h

(j=l, 2, ... , J)	 (136)

\zJ	 jj

or its inverse:

	

z i -hjj - z + l - i 	 t
-	 (137)

z j + h 

The mappings are automatically performed in order of increasing 6..
J

With

E 2 (hJ+1,J+1 + hJ+2,J+1)	 (138)

the C-plane is defined as

	

C = z J+1 - L	 (139)

To obtain the derivatives used in the computation of the flow field,

the following definitions are used:

	

h 	 aj + iR j	 (140)
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Y	 i	 N2

+
h^lak 1 	 Z

j

kq	 = zJ+1	 1

k3	
- - aj 

kj.	
zj - h

k4 = zj + hjj

ks	 = log (ks/k4)

ke = aj (141)

k7	 zj - hjj

k 	 =	 zj - i (̂ j = k3 + aj

ks = zj - i ^j = k7 + uj

klo =	 /6	 +'a+aj
/aj

kii =	 1/(k3k4)

where dots mean partial differentiations with respect to t at constant

x and y,	 that is, at constant z).

We also define
d	 7+1 =

gj = d z^	 bj aj ka kll (142)

and we note that

1!i± —'  Zj+l
ah.. hj J +	 hjj - gj(kl ks - h]j ) (143)

Therefore,

gj(k7 + kl ke) + 2 k2 ks bj (144)zj=+l

and

- z J+1 - 2 (hJ+1, J+1 + hJ+2, J+1 ) = z J+l - £	 (145)
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The t-derivatives of the hRj can be obtained as particular cases of (144),

with h^ 
j +1, h ]

^. in lieu of z
j +l, J

z, respectively. In particular, if t=j,
, 

hj, j+l = 0, as evident from (136) and hj j+l = 0.

Second derivatives are also needed to evaluate 22 log "/2t2 which

is used in (121). From (142), it follows that

gj = g j , kio + ka zj+l zj+l - 2k1 1 (k9 ks - ks aj ) J	 (146)

and, from (144),

» »	 ks

zj+l=gj(k7+klke)+gj"zj-hjj-;j (k"+kllca)+k l a j +
J

+ ;_ zj+1 zj+1 ks + N aj - ks aj) k2 k11 b j + k2 ks bj	 (147)

As above, the second t-derivatives of the h^ can be obtained as particular
J

cases of (147), with ht,j+1 , h ti,.J	 j+1,in lieu of z 	 jz respectively. ,

At every new cross-section, the geometry defines the values of

ht'l, k., and hti ($=1 through J+2) as well as of 6 j , bj , and b j (j=1

through J). According to the procedure explained in Ref. 5, the mappings

are performed in order of increasing 6j . First, the values of hR +
, j l

(j=1 through J) and found by repeated applications of the mapping routine,

which also provides the values of a ht
, j	 j

+l / a hq .

Then, E is obtained from (138). Repeated applications of (144)

and (147) allow all the values of ht j and h ,̂j to be determined. It is

possible, thus, to evaluate E and F as well.

Grid points on the contour of the body are determined next. For

each value of Y (that is, of e), a guess of b is made and S = be ie is

used to get z J+l through (139); then, the sequence of mappings (137) w,.th

decreasing values of j is applied to obtain a value z which should match

a body point in the physical cross-section. Matching within a prescribed
v

tolerance is obtained by a trial-and-error procedure.
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(149)

j
J II g,,

7 4=0

B L z2 - 1j=1 j+l 

rh - z.

Knowing c(8) and having just determined ti(?), values of P are

obtained at every grid point outside the body by applying ( 130) or any

equivalent expression if another stretching function is used. For such

points the mappings are applied again as for the body points but no trial-

and-error procedure is necessary. The entire grid is thus obtained both

in the ", - plane and in the z - plane (the physical cross - sectional plane). In

addition, at this stage all values of g j have been determined by the map-

ping routine. Consequently, it is possible to apply ( 144), in order of

increasing j, to obtain all the values of i+1 and, similarly, ( 146) and (147)

to obtain all the values of z j+1 , The latter calculations are actually per-

formed only at shock points, the sole points where second t-derivatives

are needed. The functions g,cn,f and $ necessary in the aerodynamical

part of the code are now determined at each grid point as follows:

dE dzJ+l
g = dz -	

J

d z	 - II	 g'	 (148)
1	 j=1

S dlo	 S J dlogg. f C rdlogg. j-1	 1
= g log g= g	 dz L= g L\ d—z^ 1 0 g ^ /

j=1	 j=1

(go=1)

1 ac	 1r	 _ 1
f=CT=C.zJ+1

J

p = ogg	 g^
at

j= l 9 

where the right hand side is obtained from (246).

(150)

(151)
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Finally, the term ?'3 1ng'/dta which appears in (121), is com-

puted as follows:

as log ^ - of	 1 z	 _ fa
W	 -	 J+1	 (152)
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