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CALCULATION OF THE THREE-DIMENSIONAL, SUPERSONIC
INVISCID, STEADY FLOW PAST AN
ARROW-WINGED AIRFRAME"

PART I

by

%
Gino Moretti
Polytechnic Institute of New York

Aerodynamics Laboratories
Farmingdale, New York

ABSTRACT

A detailed description of the procedure used to compute three-
dimensional, supersonic, inviscid, steady flows past airframes is
given, No limitations are imposed on the geometry of the airplane.
Suitable computational grids are generated by automatic conformal map-
pings. The equations of motion, with pressure, entropy, and velocity
direction as basic unknowns, are written and discretized in the computa-
tional space, Special rules to approximate derivatives are given,
Boundary points are treated by a modified method of characteristics,
No provision is made for imbedded shocks. Description of sample geo-

metries and results of calculation will be given in Part I,

TThis research was supported by the NASA Langley Research Center,
Hampton, Virginia, under Grant No, NSG 1248,
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I, INTRODUCTION

In the present Report a detailed description is given of a basic
computational program for the evaluation of three-dimensional, super-
sonic, invisclid, steady flows past airplanes. For the sake of simplicity,
no imbedded shocks are considered here, The emphasis is put instead
on how a powerful, automatic mapping technique is coupled to the fluid
mechanical analysis in order to assure a high degree nf accuracy without
increasing the number of computational nodes beyond reasonable limits,

Care has been taken to describe and to code each of the three
constituents of the analysis (body geometry, mapping technique, and gas
dynamical effects) separately, to facilitate applications to diflerent
geometries or substitution of the present set of unknowns and equations
of motion by other sets., Sections V through X contain the outline of the
code dealing with gas dynamical effects; all their statements and formulas
are unaffected by changes in the mapping technique or mapping parameters
or in the geometry of the airplane, All expressions related to the map-
ping are given in Sections XI and XII. Results of computations based on
sample geometries, and discussions will be presented in a separate
Report.

II. FRAMES OF REFERENCE

The free stream flow is assumed to be uniform, with a given
Mach number, M_. A Cartesian, orthogonal frame of reference, (x, v, t)
is defined as having the y and t-axes in the symmetry plane of the
vehicle, the t-axis lying along the fuselage. The unit vectors of the x, v,
and t-axis are called f, .f and IE, respectively, The free strecam velocity
vector,'\?m, is parallel to the (y,t)-plane; the angle of attack, &, is the

angle between ir'm and IZ'; therefore,



V= V,(Jsino + Kcos) (1)

In each cross-secticnal plane, a complex variable, z, is defined as

z=x + iy (2)
A conformal mapping (details of which will be found in Section XII) defines
a one-to-one correspondence between the portion of interest of the right-
hand side of the z-plane and a portion of the right-hand side of a {-plane
where, by and large, the image of the crnss-section ot the airplane is
nearly circular; it is convenient, thus, to express the complex variable
¢ in the form:

¢ = 0ot (3)

The analytic function {(z) implies that p and 8 are functions of

x and y, and vice versa, Such functions, in general, change from one

cross-section to another; therefore, we may write:

p=plx,y,t) x = x(p, 8,7
8= 8(x,vy,t) y = v(p, 8,7 (4)
T=1t% t=1

We must take good care of denoting t by another symnhol, T, when con-
sidered in connection with p and 6 since when t changes and x,y

remain unchanged, p and 8 generally change; consequently, derivatives

with respect to t (at constant x and y) generally differ from derivatives

with respect to T (at constant p and 8). Let p= b(8, T) and p = c(8, 7) be the
equations of the image of the airplane body contour and of the imzge of the bow
shock in the {-plane., A non-conformal mapping, defined by a suitable

function of 0,8 and T:

X = ¥(p, 98,7) p= p(X,Y,T)
v =8 ) 8B=Y (5)
T =TT T=T



will transform the region of interest in the right-hand side of the “-plane
hounded by p=b and p = ¢ onto a rectangle, bounded by the lines:

b {(body)

r X =0, corresponding to @
c (bow shock)

X =1, corresponding to 0
| ¥

Y =

(6)

(windward symmetry line)

[}
n

1
o3

, corresponding to ©

vf 3

NE]

, corresponding to © (leeward symmetry line)

) o

\

An example of such a funétion, X(o, 8, ) will be discussed in Section XL,
I1I, DERIVATIVES RELATED TO THE MAPPINGS
Let
g = % = G el (7}
be the complex derivative of { with respect to z (att, 7, T all constant);

gimilarly, let

m:é—-i—lacif—&=m1+ima (8)

From (3) and (7) it follows that

E£= _g_/-.g-=ei(e-w)=c+i_3 (9)
P& /gl
where
C = cos(f - w}, & = sin(® - w) (10)

We introduce now the notations, ¢ and f, for two analytic
functions obtained by differentiating g and { with respect to t (that is,

at constant x and y):

b= 20088 -y iy, O
£=§—132L€=£1+if3 (12)

Recalling that

d¢ _ 3d(pcos 8) +ia(psin9)_a(pcose)
&> % - 1oy

d{psin 8)

+ By

{13)

and




px=GC', py:GS,
G G
= - —8 -
Gx 5 BY pC‘,
TJC=0’ TY=0’

Conversely, noting that

= . 8
X_= (xD pt+xe t)’

we obtain:

.
1 o
xpza(‘, te:-%c,
1

Yp=€-;g’ Ye’—"ép'c:

|tp=0, tg = O,

( 1 Xg
%=X Py = =%

o} 0

{ 8.=0, 0y = 1,
'rx=0, TY=0,

\

(=L x.-.lx
0 Py 8 Py
Y =0, Yg=1,
T,=0, Tg=0,

o
|

-
q
i

o
[}

"
1

s
i

Nlo

- (8fy + Cfa)

Olo

1

By combining (17) and (18), we obtain:

(14)

(15)

(16)

(18)

(19)
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X \ X .
. C . Bf 6 N I p
/xx—a—}'\r;, XY--'-G\CER—O--{-S) ) xT—-a--)—{-;-(Ofl-gfn/a
X X
_ 8 p L o & p
| Yx *GxX, vy = &(- 5%, "¢ Yr = % ‘;-(dﬁ”fﬂ)'a
ktx = 0 ' tY = 0 s tT = ]
(20)
The following formulae are also obtained easily:
Gp=%w1 , Gg=-Gog , Gp=Glty -0 f + s fa]
(21)
wp:%’wa ) U)9=GCDI ’ w,r=1'v'a - Oy fa +Cﬂ3f1
G -_-_-gf.(Cm + 8rg) G =.§3(3m - Cipg) G =GV
4 % 3 1 Rl y P 1 - B/ { 1 (?2)

olQ)

(wx =-=(3m - Cua),

v,

i
UJY'-= ﬁ(cmx + 3wa) , W = Vg

t

IMPORTANT UNIT VECTORS

We begin this section by defining a p-line on a t=constant (physical)

cross-sectional plane as a line along which f=constant; similarly, a

8-line will be a line on the t=roustant plane along which p=constant,

The

unit vectors, { and j will be used to identify the tangents to a 8-line and

to a p-line respectively. Note that

-

J:.~=C'I+3J' I=Ci'.‘-3j~

j=-8T+03 J=8i+0Cj
By using (20 and (23) for any point,
Q:xf+y3+tK

we obtain:

(23)

(24)



Qy = g% oi
X
o 8
Qy=a(--x-p +9) (25)
X \ A A~
p T » [
QT="6(“Q'X—'+f1)1-afgj+K

o

The unit vector, f\l, normal to an X=constant surface, is impor-
tant for the calculation of body and bow shock points. The body, indeed,

is defined by X=0 and the bow shock by X=1. In general,

NzNy{+Nof#NKz oot
lQ xQTI

QY><Q (26)

where Q is a point on the surface. From (25) it follows that

1 xg
Ny =g, Np=-e—Ny, Np=DNd (27)
P
with
X X Ko v\
1/ 8 A 9
d:-—G—(-}-(—- +-'}-{—-f:g + Qfl ), \J=,‘/1+ ("p—)—{—‘;) +da (28)

p p
In particular, at the body, from (18),
X b X
A (Body)  (29)

_ ,
:x:p B xp T

Note also that we can write bY or by, and bT or b'r’ indifferently,

Therefore, at the body (27) and (28) take on the form:

1 by
N1 - .\.)..’ N= =2 - -b—Ni R Na = .N1 d . (BOdY) (30)
) b
) i} Y
d---c—;(bT+be3-bf1> , v-,\,1+(b/+d"’ (Body)  (31)

Similarly, at the shock,

Ha



Xe ) Cy X,r- .
hl-—' - -
X, c 3?; T
1 Sy
(Shock) N1 -'-":J' ’ Na = --—-—N; ’ Njy = N;d
= 1( £, ) -f' .’QY'a 3
d=-zlepteyfa-chy) , ve fl+ =) +d
Let

Flxe,vy,t) = 0

(32)

(33)

(34)

(35)

define the geometry of the body in the physical space., The image of the

body in the (p, 8, T) space is
p=b(6, )

(36)

To evaluate (30) and (31), that is the normal to the body, we need bS/b

and b, At T=constant,
irh-:xp I.:;9 + xe) + ‘Fy(yp be + Yﬁ) =0
Congasquently, and using (17):
be 8% - (CF
= x ?X
1 EE?X -i-'-g.ry_
Similarly, at 8=constant,

o % =
3’x(pr,r + xT) + wy(ypb,r+ yT) 4 F = 0

and
gt:
b'T'= -fa ba+bf1 -GW
Therefore, at the body,
5:1:
d= G {Body)
C’-ﬂzx + .rY

and {30, (31) can be replaced by the simpler expressions:

(37)

(38)

(39)

(40)

(41)



2
%
+
ga

Y]
(9]

£x |

'
2]

S |
11'

N'l = .......’Z.‘.__._.._X., NZ = ...._!.......__..’_:, Na = _t. (Body)
v= (52 + 52 1 %0 (Body)

NTx Yy t
o

The above formulae are general, For any particular geometry, F o

33{’ and We must be evaluated,

V. EQUATIONS OF MOTION
Having chosen a suitable reference length, X af the pressure,
density and temperature of the free stream are chosen as reference
pressure, density and temperature, respectively (pref’ Pref? Uref)'
W.th p, p,7 measuring non-dimensional quantities, the equation of state
is then
p=PJ (43)

The reference velocity, U is defined by

2 = RJ

Yref = pref/ Pret ref (44)
where R is the gas constant divided by the molecular weight of air, The
speer. of sound in the free stream, in a non-dimensional form, is then

a =¥ (45)

The logarithm of pressure is denoted by P:
P=1Inp (46)
A non-dimensional entropy, S (which is the difference between the local
entropy and the free stream entropy divided by cv) is related to non-
dimensional temperature and pressure by

S=ylnJ-(y- 1P, 7= exp(%LP + 1 8) (47)

Euler's equations of motion in non-dimensional form are:




Loy . Fxvx¥+99P=0 (48)

[

With & = K, let

V= w{¥ + k) (49)
where

- . A

X=0i+ nj {50}
and let

- - S
Note that
V. 9P = w(X+ k) (R P+PR) = wX- 4P + wP,
Vo ¥ =9 [W(RHR] F W= X Y whw Ty X w
(52)

1 oy -t 1 ey 1 - ~
'Q'V(Va) =w Yw (% +1) + "Z'Wa vy %8 +§Wa (Xa)tk
V9% ¥ = - wiTywe Tew )+ + wIw(R® +1) + w2[(¥,+ Ric- ¥ + Xn Ty xX]

therefore, (48) take the form:

( w(Xe B PHP) + YK Yy Wt wYy s X4 w) =0
%-we v, e o+ WV, W §+wt)§+wa§t-wa§xle¥+ JU9.P=0

WYy wey + W)+ '7Pt =0

\ X' Vi5+8§=0 (53)

The third of these equations can be used to simplify the first and second

equation; finally, the following system is obtained:




2 - -
(1-%)pt+x-vlp+vv1-x=o

w
( Lo T2 3%x9, x3+L(9P-P.%)+% =0 54
3V XT - XX 1-“':“'—2'(1 - t'X)‘*'Yt- (54)
w
X' V1 §48,=0

The third of (53) is not needed; the above system is composed of four
scalar equations for the two unknown scalar, P and S and the two-
component unknown vector, —';Z Once P and S are determined, 7 is

obtained from (47); the modulus of the velocity, ¢, is obtained from
n 2
¢ = 25T - 7) (55)

where J  is the (non-dimensional) stagnation :emperature, and w fol-
lows from

w?(1l + 6 + 1?) = ¢® (56)
There are definite advantages in using (54) as a basic system of equa-
tions (instead of {48) or of equations in divergence form). Not only it
contains only four differential equations to be integrated, but it provides
a clear separation of unknowns, S on one side and P and ; on the
other =zide, which is particularly welcome in problems where strong
entropy gradients occur (Refs, 1,2). Another advantage of (54) stems
from the fact that Y, operates on the (x,y) plane only; therefore, it can
be expressed in terms of p and 8 as independent variables, and using

i and j as unit vectors. In particular, note that

10



G(P -!-IPSJ)

<

-
g
il

>
<3

-
o
t

T

P

G P
(57)
.o GR oo n
Vytx= 5 [(3}0'*‘ (-d)e]

1 - > 1 ’
Evl (')(2)=G[(U Up+ﬂﬁp)1 +'6(0' Cfe+ 1’*7'!6)‘]]

% = [0 + (W, - 8)vli+ [ + (8, - w)d]]

These expressions can be substituted into (54); in doing it, however,
note that t also must be substituted by 7, and that, for any function, §:

] =@T+§ppt+§89t=¢',r+pfl@p-i-f;@e (58)

t

Using the notations:

2
K:l-i— .
WE‘
Gn
A1_GK+pf1 ’ Ag =-67€+fg
a (59)
B, =Go+pfy , B3="6‘T1+fg
G
D:B[ﬂ(l-ml)—cma]“!‘fa -\Ua
and taking (21) and {22) into account, (54) become:
P +A1P +A; P +YG( 'n )+ [c(l—co )rneal] =
p € AR 1
0. +B,0_+ Bag +_3_[ oP, . +(G-0pf )P -0faPy]-"nD=0
T P1Egh TRV T LT R e -OPLIF - 0ia Fgl- =
w
(60}
ot By g+ By Mg+ [ nP -pnfle-}-(%-nfa)P ]+0D = 0
ST+BI Sp+Bg Se’-‘-’

The final form of the equations of motion is obtained by expressing the

11
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derivatives in terms of X, Y, and T, considering that, for any function,

&,

‘f’p= @XXD

*EH
Lo+
1

= ‘I’T o+ ‘I’x XT
and, consequently:

p
§T+A1§p+Ag §e=§T+c<§X+Ag@

¥ (62)
Y
where

C=X, +As X +A Xg, E=X.+B X + B X

(63)
With the additional notations:
L=0(l-m)+ngs
F=-0X +(G-0gpf,) Xp -0fy Xg
(64)

G
=« NX, - pnfy Xp+(-6- niz) Xg

the equations to be integrated at every grid point, except on the body and

on the bow shock, are:

YG 1 i
J
GT+EGX+B3 O'Y-’r —;[-UPT"FFPX-O'.&; PY] ~-nD=20
{ W (65)

Jr ) G _
Moo+ E Ny + By Myt SRy HPy+ (S - nfz) Pyl + 0D = 0

\ S.+ES

T +Bg S5, =10

X Y
VI. CHARACTERISTIC EQUATION FOR BODY AND SHOCK POINTS
Equations (65) are not suited for the numerical analysis of points

on the body and on the bow shock., A characteristic equation in an (X, T)

plane is needed; note that in the physical space the image of sucha

12




plane is a surface almost parallel to the local velocity vector and almost
normal to either the body or the bow shock,

By multiplying the first three equations (65) by H,,Ma, and Ua,
respectively, adding, and calling A the slope of the characteristic in

the (X, T) plane (A = dX/dT), we obtain the compatibility equation:

[ - L (o1a + rug) J(Bpt A Py uta (o + o) i (i #Amy) =

w
= Wy Ry +Ua Rg + Ha Ra (66)
where
G .
¢ Ry = - Ag PY-;{—d(ﬂYTL)
§ Rg=-Bz 0o +lofP + nD (67)
RET TR Ny T e Y
- J (G )
LRB_—Ba'ﬂY-—-—a(B—T’fa PY-UD
w
In turn, A is defined by
C -2 T (F+on) T m+ N
w? w?
VAS) -
K—Xp E-A 0 =0 (68)
YG
upXG 0 E -2
that is,

X
a? G[78 - '
(B -A)(C -}) - =3 |:—-p (H+ n)) + xp(mcmj -0

or

2 a® G XB
A2 2(X 4 AL X 4he XM FEC-— Z(FX +H—5) =0
which, after some manipulations, yields:
- aG 6
A=Ct P (69)

13



Xo\” X’

J ; \

B = /kcx +1~—) +4<Xa+-——e-/ (70)
The lower sign and the upper sign must be used at body points

and bow shock points, respectively,

From (68), we obtain

U.l:E-A
G

Hp = -0 X (71)
G

Mg = - Y 9
J — o aG

Ky --‘;(UUE + Ng) = +Bm {(72)

The compatibility equation (66) is then

— - 'yw I'
T (Pp+APy) = g1 X (0420 AR
aB” Xg }
+|—(ox+ xe)+ SR1-X Ra-— Ry
PP p
YW
(73)
VII, EQUATIONS FOR BODY POINTS
At body points, the boundary condition,
V:.N=z0 (74)
yields
bY
0-mng + d=20 (75)

if (49), (50}, (30} and (31) are taken into account. On the other hand, (63!
and (29) give
E= Xo('bT + By - Bz bY) (76)
and, using (59) and {31), it is easy to see that
E=0 ' (77)
It is also important to note that (75) is identically satisfied for any

value of ¥ and T; in particular,

14



b b
Trp = Trp -E¥= 'h(-BX)T - dT (78)

The compatibility equation (73) becomes

b b

o yw Y Yo, & AwWA
P+ APy X{ﬂ(b) -dp 4 Moy - 5 ny) - Rat p-Ral-goa Ra
(79)
with
- aG
A C-P S wit (80)
bY
It remains to provide explicit expressions for (_b—) and dT.
T
The former is easy to write:
b b
Y) _1 Y,
(‘s‘m-s(b "B Pr) (81)
To get the latter, we may start noting that, by (20},
dp = d 4d_xotd yo=d 42l Cby-bet - 86) | d
T % % FrT 4V t G)LTTT 3 R/
#[8b, b +08) d (82)
T 1 al] y

Using d in the form {(41), we obtain

1
= - F
drp —-———g-—-ch+ YFY Foy d(Ct"J’x-}-St?y-I-(':?xt-i-S yt)+

LT . -
#iden vy 56 s - A0, F 4B, F 4 CF +s¢xy)] +
[sb - (¢ -
+l8b, . bisy, +Cf3)]'_"m’yt aC T, + 8 5+ CF syw)}f

1 a
= FETTE 7T Sryl?ﬁ_+ d(8F -c:’r'y)(fs ~tra) - d(csrxt+85ryt) +

1 G 7 g ]]
radebo-ben - 96)[[[5,,- a@F - c2 1810 + e -ate T, 435 ) [ +

i G » q 4 X -l-‘l
+[s b b(E 640 4 )]IIs,:Yt+ as 7, - cyy)g[c(l-ml}-s.na_}-d(c gt 57 )_u)%

That is,
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i 1., o -
g T .d(re ) 7 ={'rp_. - % . o s
drp GEACREN AN Tt BT )G M- b0 -88) F - dIfT AT,
+13by-b(P 1+ 0 ) ; s:yt. d(e ”xy’“:’f"yy)_i)
by~ b .
bd gt o e 4 fy mg by (83)

Having used (79) to determine P the last of (65) yields S and

T!
from updated values of P and S, updated values of T and g® are obtained

from (47) and (55).

Now, let

v=w(rtegsa) (84)

The third of (53) in the (X, Y,T) frame, with E=0, reads;

S' |
¥ By wey + I-PT+(XT+po£1+Xefg)PX+faPYJ=0

w —
Y W o

T
(85)

it

If (85) is multiplied by ~— and added to the third of (65) and the second of
W2
by
(65) multiplied by 5 the following equation is obtained

b b b
roy Y, -l KLe] Y. _
—) + By (-E'-)Y—]0W+~6—€’PY+DW(Cu—E—-T)_ 0

+Bg;-3(
Y o bT

GT

(86)

which can be used to update ¥. Note that ¥ is the velocity component
tangent to the body in the cross-sectional plane, Its Lagrangean derivative
expressed in the (X, Y, T) frame by ;T + Ba Gy, depends on the geometry
of t.e body and on the Y-derivative of P ouly. After updating v, updated

values of w, ¢ and 7 at the body can be obtained b's solving (84), (56) and

(75) ., One obtains:

1/ Ly
Y S -N _ o=
welle e X).3 (87)

with v defined by (31),
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j (V/w){by/b) - d

Q= - (88)
1 + (by/b)
- b
n=L . U?Y (89)

VIII, BOW SHOCK CALCULATION

Let
=y 1475+ k (90)

be the unit vector normal to the bow shock surface, The values of

711,713,713 are the same as the values of Ny, Np, N3 defined by (33), The

velocity component normal to the shock in front of it, Gm, is

-t Lyl

{Im: Vm-ﬂ=um7ll +vm7lg+ww7la (91)
where
w, =V, 3dsina
v, = Vw Csinc
w_ =V _cosa (92)

If we denote by u the corresponding velocity component behind the shock,

the velocity vector, V behind the shock is:

a2

V=V _+@-a) (93)
The Rankine-Hugoniot conditions provide the increment in P and the ratio
u/G_ across the shock (here P is the logarithm of pressure behind the

shock; let us keep in mind that P_ = 0):

_ 2 ~ oy - 1Y
P-lnv+1+1n(um-——2——-) (94)
o v-1x~ 2y 1
u-v+1um+m§-ﬂ (95)
@

Since (94) and (95) are identically satisfied at any T,




Pr ® oyl Vet (%)
u - S—
® 2
~  _ivel 2y 1 oo~
Sy = VT Vi ) VeT o7
uao
In turn, from (92), (9), (18) and (21}
umT = - Vm wT
Ve = Ug W (98}
Werp = 0
and
€T
W= b2 - famy + £y00 + G o= (99)
Therefore,

In all the above expressions, we will now separate ¢qp frum the

rest, letting first dT in the form:
dp = Cy + Cq Copep (101)

The values of C, and C; will be computed later on. It follows that

1%y Sy d
Cq = ’G[T("E"T +d Gy, Ci= e, (103)
From (33),
(R, =C +C ¢ Ce = - —C Ce = - —C
1T ™ Vg g TT ' ® 2 8 ! & NE *
] c o]

Y, Y Y
§715T=c.,+ca Copp c7=-[(?)T711+-E—csj, Ce = - —Ce
\713,1, = Cg + Clo CTT ' Cg = Cgd + ?ll Cl s clo = Cgd +?l1 Cg

{104)

18



Then

Vg = Cy1 + Cya Coprp (105)
C“=(um7la -vaI;)wT+vw ca'f'VwC-;'f'Wng 6
(106)
01: =u, Cs + Ve Cg + W CIO
From (96) and (97)
Pp=Cig +Cis ¢pp , Cip = ".:;"—\,‘:Icu ) CH=,..3 v 10
uy -5 Ua=—3
~ (-1 2v1) y-1 2y 1
| o @ Cis + Cia epp , Cas = (TT'V-FI' = Ci1v Cre= (T - 73T =7 )C12
m o
(107)

Then,

b
(‘-1 - u,,/T 2 Ciy + CiaCpp » C172=2Cis - Cia , Cys=Cia~ Cyg

{108)
With
Veuit+v]+wk (109)
it follows from (93) that
us=u, + @-u )
v = v+ (oug )l (110)

w=w, o+ (AU ),
Therefnre,
up = Cie # Cao epp 5 Cro = - Vg Up+ Crofh #(8-8,)Gs , C_ =Cralh +(-8,)Ce
v = Cay + Caa e ,  Cay =u, Wo + Cypfla +(u-u,)Cy , Cog=Cially + (U-u,)Ce

Cpa

H

WT'—"Cga + 094 c

T Cyqp Ny + (G-Gm)CQ » Coy = Cyghly + (E-Em)cu

{111)

and

19




1 1
"-;;,(Cw_o -7 Cags) , Cagso =5 (Coo = 7 Cpa)

£}
1)
[ o]
H

HT = Cgs + Cgg CTT '

(Cap -~ ™ Cg4)

3 L

1
”,I. = CQQ + CQB cTT ’ Cﬂ'ﬂ' = '\-V(CQS.. -7 CHS) » c"-’ =

(112)
By substitution into the compatibility eqnation (73), we obtain

C
- (cla'f'clicTT'!'KP ) = —B——'{Cag + Cpg cTT+:\cX'_'(C'17 + Cag CTT+)“X) -

-ur-‘-"—(c n--)+ae R1-Rg+-——-R3r

which allows Cpq to be computed, as follows:

¢pp = Dy (Do + Dy + T) (113)

Dy = - — ywx" (114)
Cia +T~(Caa --—-Caa)

Dg = Cya +-V—‘;-J-’—(c:,.,E ) mcg.,) (115)

Dy =%}i‘?i—Ra +3Ra} r%x—(c--——“)-l]l‘ll (116)

7= A[Py + oy - ¥r)] (117)

Having computed ¢ ¢qp and ¢ are obtained by successive

T’

integrations. Once a new shock geometry, p=c¢(8,T), is obtained, the

A ~
new 7l and u_ are evaluated; then, (94) and (95) can be applied to compute

P and 1':1' The three velocity compouents follow from (93); therefore
o(=u/w) and m(=v/w) are made known. Finally, S is given by

~

u
S=P-vin— (118)

u
To complete the information needed for coding the shock calculation,

we need to evaluate C, and Cp. From (34),
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1/ . -
-G Cppt Cyp fa - Cp fy +chaT--f,T)

1

4
“§ Cr

1 1 1
"gerr-gleyrla-ephl)-gleyhy - chiq)

d!ll, +CT .f,.l.p f-' l'-—" -—l"-"'(c f c f)"
=4l vy d==0y -0 Ly v ¥aln - Gl TG ey TR " O TR

n

- IE[CY Imag (f,) - ¢ Real (fT)} (119)
Now,

£ -f +f xT+f

T vy 'T

BalogC 1 2% logfla, _c(cf1.8£a)J+G§§§-§9—Cﬁrsc - c(8f, +Cf, )'

= o *G TRt L

=§f.1;‘i.§.§. 16 (E)f(c -cfl-cha)(C-}-zS)]

-,—Ef-ﬂliﬁ(\"-f_,%’%(crcf): (120)
Therefore,

My 4o !
Cl = - d”lh +TC91 -y f; + w0g fa--a(CYTfa - CTfI) -

- &!cy Imag —aL+ T Imag(v - Hleg-chj -
2 (121)
3 s e
- ¢ Real M—;ﬁ-- Real ‘,\(ll' -f)(cT- cf):
ot? .
Cg=-é‘

IX., GENERAL OUTLINE OF ONE INTEGRATION STEP -
The equations obtained in the preceding sections are used to
proceed from a station, t, to a station, t+ At, using a predictor-corrector

integration scheme, as follows.,
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Predictor stage

Given, original values of P, ¢, 7, S, @®, ¥, w, ¢, ¢, b, b

T’ Y

b'I" ¢ %, 8, £ *and

At all value of 8, compute Cyr Sym bYY' bYT'

At all value of € and »
Compute X- and Y- derivatives of P,0, m S (see next section)
Compute p = meod 7, Xp, Xg) Xt (see Section XI)
Compute G, #, Ay, Ap, By, By, D, E, C, L, F, H

For all points except body and shock points, determine Pos O

T, 2nd ST from (65)

For body points,compute Ry, Ry, R, from (67), A from (80) and

d. from (83). Then, use (79) to obtain PT’ (86) to obtain v and

T
the last of (65) to obtain S

T
e

For shock peints, compute Ry, Ra,Rs from (67), evaluate M, ,M;

andM; and compute all coefficients (C; through Cga).

Compute D,,Dg, Dy and [I, and determine Cpep from (113).

Update P, 0, and S at all interior points, P, v and S at all body
points, as well as ¢ and ¢, using the following rule (where % is an
arbitrarv function):

&(t + At) = B(t) + @TAt (122)

Move to the station defined by t + &t; compute the geometry of the
hody; determine the basic parameters for a new mapping., Determine new
values of b, bY‘bT' From the updated values of c, determine new values
of cy; using the updated values of c,, evaluate the new values of #;,Mz,
N5, the corresponding Gm from (91) and updated values of P and u behind
the shock from (94) and (95); then use (110) to get updated values of u,v,
and w and update 0 and M accordingly. Use (118) to get an updated value
of S behind the shock. At the body, use (87), (88) and (89) with the
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updated values of q°, v and b, Atall points, updated values of J, ¢°
and w must be computed,

Symmetry conditions are now imposed where necessary, Finally,
the original values of P, 0, ™ 5, v, ¢ and cp are temporarily saved.
A new computational grid (including values of g, £, and ¥) is generated,

Corrector stage

The computation is restarted as at the beginning of the predictor
stage, The geometry and the grid, however, are now those of station
t + At; and all the variables have their predicted value at t + At as well,
The updating in the corrector stage is performed using the following rule
in lieu of (122):
Bt + Bt) = 2| 3(6) + F(t + At) + B0t ) (123)

values $(t + At) is the left-hand side of (122) and @T is the T-derivative
computed in the corrector stage. A new evaluation of the body geometry
is not necessary; the computational grid, however, has to be re-evaluated
since the bow shock location may have changed slightly. The values at

the shock themselves have to be recomputed as at the end of the predictor
stage. Symmetry conditions are imposed again. Finally, the updated

values of P,0, 1, S5,v,c and ¢p are stored as initial values for a new step,

X. DISCRETIZATION OF X- AND Y- DERIVATIVES
In principle, the MacCormack scherne(3) for integrating the
equations of motion at all interior point is adopted. This is reflected by the
use of (122) and {123) at the predictor and corrector level, respectively.
In addition, whenever possible, the X- and Y- derivatives should be
approximated by 2-point differences taken, for example, forwards at the
predictor level and backwards at the corrector level,

There are several exceptions to the above rule.
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1) At body boundary points, where X=0, backwards approxima-
tions cannot be taken and are replaced by the approximation:

.~ (124)
S AX

which maintains a second order accuracy if the equations are linear
throughout the integration Step(4). Here, ‘I’i = §(iAX,Y)
2) Similarly, at bow shock boundary pointe, where X=1, forward
approximations cannot be taken and are replaced by the approximation:
285 - 3%, + &,

~ {125)
AX

$
X

where @i = %1 -1i8%,Y).

3) The last of (65) simply expresses the fact that entropy is
transported unaltered by the moving particles, That means that no
entropy signals travel backwards along streamlines. Consequently, no
approximations to X- or Y- derivatives are allowed which imply forward
differences of S along a streamline,

In most of the cases the rule does not have to be strictly enforced;
in other words, the violation of the physical principle produced by alter-
nating backward and forward differences (as in the MacCormack scheme)
does not produce sizable errors, so long as the entropy distribution is
smooth and essentially flat. Difficulties and inaccuracies appear, however,
when entropy layers tend to build-up(l). It is therefore advisable to adopt

the following scheme systematically:

Soo-5S10 Soo - So1
Predictor level: Sxmsgnc———ﬁ——— s SymsgnﬂT
2S00- 3S;0+S20 2500 ~ 3501+ Soa
Correction level: Sxmsgnc X , SY;'-‘:ISgnT* Y
(126)
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where

Soo = S(X,Y), S0 = S(X-2Xsgnc,Y)
Spo = S(X - 28X sgne¢, Y) (127)
Soy = S(X,Y - AYsgnT), So3 =S(X,Y-24¥sgnm)

Atbody and bow shock boundary pnints, the rules given at (1) and (2) above
should be used for approximating SX as well as the X-derivatives of the
other physical parameters,

4) Similarly, the terms ;T + Ba ;Y in (86) express the Lagrangean
derivative of v. Forward differencing of v is thus forbidden and GY

should be approximated as follows:

~ ~ Vo = vy

Predictor level: vy NSgUY —Eg

. ~ . (128)

- - 2Vo - 3V1 + va

Corrector level: VyRSEnY 5y

with

G:0 = 6(0; Y)
vy = v(0,Y - AY sgnv) (129)

Vg = ¥0,Y - 2AY sgnv)
5) Y-darivatives at the bow shocl. boundary are conveniently

approximated by centered differences ,
XI. COORDINATE NORMALIZATION AND GRID STRETCHEING
ALONG p-LINES
The object of the transformation (5) is twofold. It defines a
variable X which is constant (equal to zero) along the body and also con-
stant (equal to 1) along the bow shock. In addition, it provides a stretching

of coordinates according to which evenly spaced grid points on the X-axis
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correspond to unevenly spaced points on the p-lines, The latter property
is used to accumulate 0-lines in the vicinity of the body where a stronger

resolution is needed,

The values of the derivatives, Xp, Xg, and X depend on the
choice of the stretching function X(p, 8, 7). In this section we give an
example of such a function. If the definition of X(p, 8, T) is changed, the
definitions of Xp, Xg and X, must be changed accordingly, The rest of

the program does not need to be altered.

T.et
p=c+ Stanh[a(X-1)] (130)
with
__c-b
5= e (131)

Obviocusly, X as defined by (130) satisfied conditions (6), Different
values of O provide different legrees of accumulation of 8-lines near
the body. To give an idea of the effect of @, let b=0, c=1, Fig, 1 plots
X vs. o for various values of @. Clearly,strong stretching effects begin
to appear for values of @ larger than 2,

It is easily proven that:

X =9 1 | (132)
e Cf.[&ge - (p_c)z]
X
. p-c P
X9 = - \famhg (Cy ~ Py} + ® CY} T (133)
X
. _{ p-c 17p
X:= - ke ©p - P+ Sep/ g (134)
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XII, EXPLICIT COMPUTATION OF TERMS RELATED TO THE MAPPINGS

The mapping of the z-plane onto the 7-plane, mentioned in

Section II, is performed according to the general scheme exposed in Ref.

5. In the z~plane, the "hinge-points" are denoted by h“ {4=1 through J).

In addition, hJ+1, 12nd hJ+2, 7 are the affixes of the lower and upper

intersection of the cross-sectional contour with the y-axis,
Let
Zq, =% {135}

and a sequence of J mappings be used, each defined by the equation:

8,
z, -1 z, - h,,\J
j+1 _(J' ii (j=
= - =L, 2,...,0) (136)
Zir1 1 \z. + h"g ’
J
or its inverse:
1/8

z, - h,. Ziy - 1
A =T (137)

z, + b j+1
R

The mappings are automatically performed in order of increasing 63..

With
£ =2(h +h ) (138)
27 J+1, J+1 J+2,J+1
the C-plane is defined as

To obtain the derivatives used in the computation of the flow field,

the following definitions are used:

h..za, +1if, 14
¥ J+1F3J (140)
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o = Bl
J
o g2 L
ko = 2y -1
ka = - &, ky = - h.,
8 = E T By
#

ks = 2z, + h,,

J JJ
kg = log (ka/ka)
ke = &j (141)
ke = z, - ...
L B
k = . - i » = k + 0’-
8 ZJ BJ a

k ='z.-i..=k + o,
o j BJ 7

kig= .6 8. +.Uv. .,
10 J/ i J/ i
kiy= 1/(kgka)
where dots mean partial differentiations with respect to t at constant

x and y, thatis, at constant z).

We also define

SRS i
gj a2, 6_] C(.j kg kll (142)
and we note that
Bz.+l . az.+1 " .
B—Hl——h.. + —=h,, = g.(k; ke - h..) (143)
i 3] 3n. N J 1
1]
Therefore,
’ _ -]; .
and
[] . 1 . L L] .
C=2pp1 -7 By g1 TPy, g1 2 2py -2 (145)
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The t-derivatives of the h&j can be obtained as particular cases of (144),
with h&,j+1' th in lieu of zj+1’zj respectively, In particular, if {=j,

h = 0, as evident from (136) and 1'1
¥

iy it

Second derivatives are also needed to evaluate 2% log {/2t? which

ji 341 170

is used in (121), From (142), it follows that

-

- 2 ’ . )
gj = gjk..klo + 'R‘;' Zj+1 zj+1 - zkll(ICQ l\a - kﬁ aj)-l (14‘6)

and, from (144),

ke

. = K Ka) + g, %s-Busm el + ky ka) bk &, ) 4
ZJ+1 EJ(k7+<1 &) ng_J ij .-,_j(v 3 ka)4+ky i

=

L2541 Fjl

+ ks + (ks Oy-Ka &) ko kuy 5, 4gkaks 6, (147)

As above, the second t-derivatives of the h{’ can be obtained as particular

J
cases of (147), with hL,j+1 , h—Lj in lieu of sz, zj respectively,

At every new cross-section, the geometry defines the values of
h{,l' h“ and h&l {(£=1 through J+2) as well as of 63" 6j’ and 6J. (j=1
through J). According to the procedure explained in Ref, 5, the mappings
are performed in order of increasing Gj. First, the values of h{, 541
(j=1 through J) and found by repeated applications of the mapping routine,

which also provides the values of 3h /Bth.

L, j+1
Then, I is obtained from (138). Repeated applirnations of (144)
and (147) allow all the values of hy, and i;-{,j to be determined. It is

possible, thus, to evaluate T and P oas well.
Grid points on the contour of the body are determined next, For
each value of Y (that is, of 9), a guess of b is made and { = bele is

used to get z through {139); then, the sequence of mappings (137) with

J+1
decreasing values of j is applied to obtain a value z which should match
a body point in the physical cross-section. Matching within a prescribad

tolerance is obtained by a trial-and-error procedure,
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Knowing c(8) and having just determined b(%), values of p are
obtained at every grid point outside the body by applying (130) or any
equivalent expression if another stretching function {s used, For such
points the mappings are applied again as for the body points but no trial-
and-error procedure is necessary, The entire grid is thus obtained both
in the {-plane and in the z-plane (the physical cross-sectional plane), In
addition, at this stage all values of gJ. have been determined by the map-
ping routine, Consequently, it is possible to apply (144), in order of
increasing j, to obtain all the valuesof éj+1
to obtain all the values of ;j+1' The latter calculations are actually per-

and, similarly, (146) and (147)

formed only at shock points, the sole points where second t-derivatives
are needed, The functions g,®,f and } necessary in the aerodynamical

part of the code are now determined at each grid point as follows:

g.-.-a-z-:——dz = Il E. (148)

dz dz L\ Tz LY-I-O
j=1 j=1 )
;o
:F h,, -z
_2¢ N 4=0 r 1 i ; v
T Lz ooy G # g (gL - 1) (149)
j=1 T+l J ]
(g,=1)
_13C_1T: ;
e pdeeglag, - 5] (150)
5 J
1 N g,
il ._._.___%LE.: 2_ i (151)
j=1 &

where the right hand side is obtained from (146).
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Finally, the term 2%1log /3t which appears in (121), is com-

puted as follows:

Plog” B _1TY  n7
o o ?jlf.nl i-f (152)
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