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1. dntreduction and pistoricals

The object of the present paper is to introduce an expli-
cit integration scheme for the Euler equations of gas dynamics
which, after extensive tests, 1 consider the best among all
schemes available so far.

According to P. Gordon, from whom 1 got the first sugges-
tion of the scheme (1), its basic idea could be found in an early
paper by Courant, lsaacson and Rees [(2]). In 1667, after doing my
homework on Gordon's scheme (3], I dropped it, giving my prefer-
ence to MacCormack's scheme (4] which was also welcomed by a
large number of numerical gas dynamicists.

Three reasons prompted me to adopt MacCormack's scheme
instead of Goraon's:

1) The former has second order accuracy, the latter haa
only first order accuracy,

2) The former could be easily coded for any number of
space~-like variables, the latter was limited to one-dimensional
problems, and, on a minor scale,

3) The former seemed to need simpler codes.

A couple of years ago, L. Zannetti rediscovered the basic
idea of the integration scheme independently. He was, however,
in a more advantageous position than Gordon because he had a good
experience of two-level schemes and he Kknew how to maintain
second order accuracy despite using one-sided approximations to
space derivatives [5]. The first public appearance of Zannetti's
scheme (6] snowed that the first objection above had been re=-
moved; the scheme, however, was still essentially one-
dimensional.

Since then, 1 have been working on the scheme, in order
to test it in the widest possible range of flow parameters and
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under the most exacting circumstances. 1 did also work out a
multi-dimensional version of the scheme and 1 consider, thus,
that the second objection above can also be removed. As far as
the third objection is concerned, the code turned out to be not
as complicated as 1 thought and it can be provided now in the
form of a 'black box' which makes its application very simple.

Therefore, 1 believe that the scheme which*l am going to
describe deserves recognition. It is superior to any other from
a physical standpoint and it provides results of great accuracy.
The second statement is an obvious consequence of the first!

To 4identify ¢the schenme, l decided to <call it the
A=scheme, since 1 could not attribute to it a well-defined pater-
nity. In fact, most of our recent progress in numerical analysis
seems to be the product of a natural evolution, occurring in dif-
ferent places at almost the same pace. A paper by F. walkden, P.
Caine and G. T. Laws. which just appeared in print (17)], seems to
overlap a good part o" the present one although the Authors may
have missed what I cunsider a very important improvement over the
Gordon scheme. The scheme, as outlined by Wwalkden, has indeed
only first order accuracy, and seems to make heavy use of averag-
ings whose damaging influence cannot be evaluatea a priori but
wnich smell strongly of artificial viscosity.

2. BRecasting of Euler's eguations

In what follows, we will denote by T a time-like coor-
dinate, and by X, Y two space-like coordinates. Such <cordi-
nates are in general not Cartesian, but obtained from Cartesian
coordinates through a series cf mappings and stretchings, as re-
Quired by the problem.

A2 the main thermodynamical unkncewn we will assume the
logarithm of pressure, P. 1In time-dependent problems, we will
assume, as the main kinematic unknowns, the velocity components
along the computational grid 1lines in the physical plane. 1In
steady, supersonic flow problems, it is more convenient to assume
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the slope of the velocity vector or two angles defining the velo-
city vector.

Beginning with one-dimensional problems, that is, prob=-
ilems which contain only one spacve-like variable, the typical un-
steady flow is defined by the equations:

(1)

and the typical steady, supersonic flow is defined by similar
equations, where u plays the role of the velocity slope. The
coerficients.ai depend on the computational grid. The terms, ¢
may also depana on other conditions or assuamptions; for example,
in unsteady flows ¢, is not zero if c¢hanges in a duct cross-
sectional area are considered, c2 is not zero if the frame of
reference is accelerating.

The simplest possible case of unsteady flow is obtained
if the frame of reference is fixed and Cartesian, if there are no
area effects and no stretching of coordinates is used. ln that
case, for a perfect gas with a constant ratio of specific he. ts,
y, (1) become

Similarly, the simplest possible case of steady, supersonic flow
is obtained if the frame of reference is fixed and Cartesian and
no stretching of coordinates is used. ia this ocaaw,; If . (lor
better clarity) we write ¢ instead of wu for the slope of the
velocity vector, and T and X are the horizontal and the vert-
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izal Cartesian axes, respectively, (1) become

PT * (o/:}Px +* (yl:)ax = 0

(3)
P 2 2
cT + (a /yu (1 + @ /:)Px + (ul:)ox = 0
where u is the velocity component in the T-direction, and
ks 1eat/u® (4)

The slope of the characteristics of system (1) 4in the
(X,Y) plane, A = dX/dT, is obtained by solving the equation:

-l
1 a1
s O (5)
-
32 222
There are, in general, two roots to this equation. he will

denote by 11 and A_ the smaller and the larger root, respective=-
y. It is well-known that the system (1) carn be replaced by the
equivalent system:

(a__=) P_+A_P - A -2 -
TR L St b T b B et LARRL T TR R L R s
( 22" )(P +12Px) a,., (uT+ 2ux) + (122 2)cl 8,,0, * 0
Obviously,if the second equation (6) is subtracted from the first
and the second equation, multiplicd by a is subtracted
from the first, multiplied by a we obtain 11) again. ' &
however, we wWrite P and u or 3 and u_ in the first of (o)
and, similarly, sz nnA uxz in the second, we obtain

P £ Sa s D _(x s
R Nl T hi o TR L LR R LS B0

uT + Dzl(AZan-h1 ) + A1x2uxa 2A1ux1 + °2 = 0

where
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l,i-l a
o N TV A
27 ol (6)
From the viewpoint of partial differential equations, Px1 s sz
and u : it 4is easy to verify that (7) are, once more,

s U 3

1
identical ui%ﬁ (1). Not so from the viewpoint of finite differ-
ence equations, if we decide to approximate P ana ¢ in dif-

ferent ways, and similarly do with u*1 and u“.x'l he

Again, in the sizjle unsteaady flow defined by (2),

2
a = =Eh a TR BT a s & /Yy , a s u
1 12 21 2e
(9)
11 z u=a , 12 : u+a
and (7) become
. p o
l ‘ -~ -
Pp ¢ 203 Py ¢ 2P v A u 000 uy,) = 0 il
A &
- A A
Up ¢ 2y PaPxa=H Pyq) * 2038y ¢ MUy o O
whereas, in the simple supersonic flow defined by (3),
4 2
ab_
By SR s ¥ DIy By Ty Ve KRR
Yu
£11)
aii 1' 131 I8
A, = (o= 3 s A, = (o e P } + 8 8 AIN"e
u u
and (7) become
: 151_
P A A > A ok
r * 2P ¢ 2R 242 2%y * O
2yu
£12)
xuf_ |
2% A
g+ aazs(lz X2 1P)“) + 2(‘2°X2 P 1°X1) =0
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3. Riacretization

From the two examples above, it is clear that A and A
are the slopes of the two chara: eristics which carry the iufor-
mation necessary to define P and u (or P and o) at every
point. For such a point, A (Fig. 1) the domain of dependence is
defined by point B and point C, the two characteristics being
defined by AC and AB, respectively, to a first degree of accu-

|

A
o o o—0 ———
D B E CF X
Fig. 1

racy. When discretizing the partial differential equations for
computational purposes, point A must be made depend on poirts
distributed on a segment which brackets EC [7], for example on
points D,E and F of Fig. 1. Such a condition is necessary for
stability but it must be interpreted with a grain of s=alt. Sup=-
pose, 4indeed, that one uses a scheme in which a point such as A
is always made depend on D,E and F, 4indiscriminately (this is
what happens in most of the schemes currently used, including the
MacCormack scheme). Suppose, now, that the physical domain of
dependence of A is the segment BC of Fig. 2. The information
carried to A from F is not only unnecessary; it is wundue and
therefore the numerical scheme, whilst not violating the CFL
rule, violates a law of physics, the law of forbidden signals.
Pnysically, it would be much better to use only information from
D and E to define A, even if this implied lowering the nomi=-
nal degree of accuracy of the scheme. In other words, to say

that a given scheme, using points D, E and F, has a second
order accuracy is meaningless since a wrong scheme has no accura-
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¢y whatsoever.

In transcnic problems treated by relaxation methoas, the
need for a switching in the discretization scheme in passing from
subsonic to supersonic points was felt from the beginning (6],
and it is evidently related to the law of forbiadden signals,
although we find it justifiec in the literature as a gimmick to
avoid expansion shocks or to gZive the proper ¢ rection tec the in-
crease in entropy (9) (a curious statement, indeed, for a tech=-
nique which is, by definition, isentropic!).

T}

o
o
o
m
mo
o |

Fig. 2

The sensitivity of results to the numerical domain of
dependence as related to the physical domain of gependence ex-
plains why computations which use 1integration schemes such as
Mz :Cormack's show a progressive deterioration as the AC line of
Fig. 1 tends to become parallel to the T-axis (A _=+0), even if A
is still negative [10). The information frcm F actually does
not reach A; in a coarse mesh, such information may be drasti-
cally different from the actual values (from C) which affect
A. On the other hand, since the CFL rule must be satisfied ang
F is the nearest point to C on its right, the weight of such
information should be minimized. The Jl-scheme, relying on (7),
provides us with such a possibility.

he stipulate that every derivative f be approximated
by wusing points uhicn lie on the same side of E as C, and
that every derivative be approximated by wusing points

which 1lie on the same §3de of E.  asa B. By a0 doing, not only
we relate each characteristic with information which is found on
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the same side of A from which the characteristic proceeds, but
we weigh such informi ion with factors which zontain 11 and 12 so
that the contribution of points located too far outside the phy=-
sical domain of dependence is minimized.

A one-~level scheme which defines
- /48X A <0
(r' ri) ( . )

'11 z (13)

- A LI
(f‘ rD)/ X ( . 0)
is Gordon's scheme (1), accurate to the first order. To obtain a
scheme with second-order accuracy, we consider two levels, in a

manner very similar to MacCormack's. We must, however, introduce
more points, as ‘n Fig. 3. At the prediztor level, we define

(f’-fs)ldx (i1<0)

f!l = (14)

(er-;rD + ro)/ax (xt>0)

At the corrector level, we define
-2 - A A <
( t'A + 3rN fP)/ - dgadnd | N 0)

rxi s (15)

- A
(fA rH)/ax ( 1>O)
It is easy to see that, if any function f is updated as

T =1 « fTAT (16)
at the predictor level, with the T-derivatives defined as in (7)
and the X-derivatives defined as in (14), and as

3

f(T + AT{ .5

(f « T « TTAT) (17)
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at the corrector level, with the Te-derivatives definecd again as
in (7) and the X-derivatives defined as in (15), the value of
at T « AT is obtained with second order accuracy. The wupdating

b
M A N P
o o o <] o
AT
—+—o0 o 0 o © vl
G D E F X
Fig. 3

rules (16) and (17) are the same as in the MacCormack scheme.

4. Adgiticona] remarks and a 'black pRox' sample

In the simple examples above, ¢the computational grid
coincides with ¢the physical grid, which is fixed. The charac-
teristics are the physical characteristics of the flow. For ex-
ample, in the unsteady case, the domains of dependence are relat-
ed to the simple concept of subsonic flow (for wu>0, wu<a,
x1<0.l2>0) and supersonic flow (u>a, l1>0.l >0); similarly, in
the case u<0. The system (1), however, ar well as (7), is much
more general. The computational grid, in the (X, T) plane, is
fixed but its counterpart in the physical plane generally varies
with T. The discussion of the domain of dependence is carried
on and the slope of the characteristics 1is deterzined in the
(X,T) plane, with reference to the fixed grid. Therefore, it may
happen that a flow which is physically supersonic has to be con-
sidered as 'subsonic' in the computation (Fig. 4); conversely, a
phys.cally subsonic flow may have to be considered as 'superson-
je' in the computation (Fig. 5).

We conclude our analysis of the A=-scheme by showing (in
Fig. 6) an example of a FORTRAN subroutine to compute the X-
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AL )

COMPUTATIUNAL PHYSICAL
fig. 4
\ \
A Ao
B c \B / k
—t Qe O ] S
\ A\ N
COMPUTATIONAL PHYSICAL
Fig. 5
derivatives according to the conventions outlined above. There,

LOUP=z=1, + 1 in the predictor and corrector stage, respectively,
N denotes the grid point location, LAP=(LOOP + 1)/2, and
ALAM(1), ALAM(Z2) are =\, and A_, respectively. Special provi-
sjons are made at N=1,2 and at N=NA, NC where NC is the last
grid point and NA=NC-1 to account, in this case, for the pres-
ence of two rigid walls.

5. Ihe sguation of energy

The equation of energy is conspicuously absent from our

analysis, so far. Indeed, written in terms of entropy, it simply
states the invariance of S on a particle path:

- 10 -
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OF PUUR ul uuy

I=1 UN23,* (UNL=UN)+UNO
NTL=N=-LOOP 9 IF(ALAM(LX).LT.0)G0 TO 1
LX=LAP+1 IF(NTL.EC.1.OR.NTL.EQ.=NC)GO TC 3
LX1=3-LX PX(LX)® (PN=PNU) *DDXD
NO=N=-LOOP UX (LX) = (UN=UNJ) *DOXD
N1=N+LOOP IF(NTL.EQ.~1.0R.NTL.EQ.NC)GO TO 7
N2=11+LOOP IF (ALAM (LX1).LT.0.)GO 10 7
PN=P (N) LSAV=LX
UN=U (N) LX=LX1
PNO=P (NO) LX1=LSAV
UNO=U (NU) 1 I=LX4LAP
PN1=P(N1) 3 PX(LX)=(=2.*PN+3.*PN1=PN2) *DDXD
UN1=U (N1) UX(LX)=(=2.*UN+3,*UN1-UN2) *DDXD
PN2=P (N2) IF (I.EQ.2)RETURN
UN2=U (N2) 7 PX(LX1)=PX (LX)
IF (NTL.NE.=2.AND.NTL.NE.NA)GO TO 9% UX (LX1)=UX (LX)
:NZ¢J.'(PN1-PH)+PNO RETURN
Fig. &
DS/Dt=0 (18)

where t is real time (In the two simple examples above, (10)
becomes

S+ usS_=0 (19)
and
S + 05 =0 (20)
respectively).
At each integration step, the other equations of motion
can and should be integrated independently of (18); the latter,

in turn, should be integrated by approximating the X=derivative

of S 4in such a way that information is never carried backwards
on a particle path [11]. Obviously, the rules for the approxima-

tion of Sx are different from the rules for the approximation

R 4,
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of P u_, 9 , and any conceptual or coding mixup should be care=-
fully'avoided. The only interaction between entropy and the oth-
05 dependent variables of a flow prob%onzoccurs via the value of
a in unsteady flows (see(2)) or a ,u ,< in steady flows (see
(3)) since, in general,

2% s v expl(y=1)P/y + S/v]) (21)

and, for steady flows,

e® « 2=t (22)
y=1 o

where a is the stagnation speed of sound, and q is the modulus
of the 3oloc1ty.

£. Extension to multidimensional problems. JLUnsteady flows

Let us consider now a problem with two space-like vari-
ables, X and Y. The typical unsteady flow is describea by the
equations:

B+ 8.7 ¢ 8. 0. +b..P. 0. v +80 * B ..V +0_ a0 (23)

v =
r* nal?x + '32“1 + b21P! + bzzv; - 331u¥ + dsvx + c3 s 0

The simplest poussivle case of unsteady flow is obtained
if the gas is perfect, the frame of reference is fixed and Carte-
sian, and no stretching of coordinates is used. In that case,
(23) become

PT + qu + vPY + Tux + va-O

2
uT 4 uuy o+ vy e (a /Y)Px=0 (24)

2
vT UV, VY, o+ (a /v)P!-o

=N
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We see that not only the ¢ terms but also the terms affected v
the coefficients g and h depend on the choice of the compu=-
tationsl g=_.d. Forii ucll-cﬁgacn grid, we expect suct, terms to
play a mwminor role in the computation. Most of the remaining
terms can be arranged in two mwmatrices, one formed with X-
«~erivatives of P and u, the other with Y-derivatives of P ana v.
Two terms are left out, dzu! and d3vl. whhich, as =2een froaz (24),
are physically relevant.

We will now rearrange the equations (23) in two sets, one
essentially related to X and the other essentially relatead to

1
P: + a‘ij - a1zux - 311ur - 01-0
(25)
uT - a21Px + lzaux * dzu! + hZPY * czno
and
P: * Rty RS T B0
(20)
VT + b21F¥ + b22v! + d3vx - hst + c3a0

The meaning of Px and P! is simply that PT' in (23), is 1intended
t? be obtained as the sum of two separate contributions, P_ ana
P_; therefore, if the first of (25) and the first of (26) are ad=-
ded together, one obtains the first of (23) again. The distribu=-
tion of the terms, 5. .u_ ,8..v. and ¢., betweea the first of (25)
and the first of (23; Is E%bftrary. but the arbitrariness is ir-
relevant, as we will see soon.

Both (25) and (2b6) show a strong resemblance te (1), par-

ticularly if we rewrite them in the form

X
1
X (27
2

- 13 =



Extension tc multidimensiconal problems. Unsteady flows

and
Y Y
P
T . b”i’Y + b12v! . C1-0
Y (28)
'T . b21P! - bzzv! - C200
with
X X
C1s‘1lu! + c1 ’ cg.d2u! + th! - °2
Y Y (29)
c1"12“x : -d3vx + hSPx - o3

‘hereforz, we can proceed as in Section 2 for (27) and
(28), separately, to obtain two sets of equations similar to (7):

M X X X X X X
P A - A A e
R RN L X M T T A 3 Thit Mt AT T
X X Xy X X X (30}
Y =15 | A - }
Up * Do (AaPyo=2 Pyy) * A AUy A diuy, + €, 00
and
Y Y Y Y Y
P A - A l = |
1 e B1 1P¥1 Bz ZPIZ + 2( V!2 ‘v 1) + C1 o
oo B AN E A ) s DA BB A .00
T 21 2"yt N A A h s g b Gl
where
a -lx b -l!
A, = s B 8
1 X X i Y Y
12-11 12-11
(32)
a v
Dx & —_—a D! < Pkl . L
1] e s T T3
A = A =)
2™ %4
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and l:.lz are solutions of egquations similar to (5):

X v
o2 . Sl 821 2% ot ®2
sl . =0 (33)
X Y
s Y
32 822°"1¢ ®y2 022"y

In discretizing (30) and (31), we will use the same rules as
stated in Section W,

We turn our attention now to the discretization of the X=-
and !-der*vativos in (29). The most important terms, u_ in Cz
and v_in C_, should be discretized recalling that they come from
Lagrangian derivatives in momentum equations. Therefore, it
seems proper to discretize them the same way the entropy deriva-
tives are approximated in the energy equation. Specifically, the
sign of d3 must be tested; then, at the predictor level,

(VF-VE)/AX (d3<0)

Vx: (34)
- - a
(2vE 3vD vG)/ (d_>0)
and, at the corrector level,

(-2vA + 3vN-vP)/Ax (d3<0)

- / >
(v‘ VH) AX (d3 0)

Similar formulas are used for u_ ,with reference to the sign of
d « The same appr?ximations can be used for the derivatives ap-
pearing in C_ and 01. he recall that they are affected by coef-
ficients which should be small; therefore, any approximaticon
should serve the purpose. For the same reason, any approximaticon

to P_and P_ appearing in the grid corrective terms in C. and Cx
a 2
should work. One can cnocse to use centered differences or a
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MacCormack=-type of alternating backward and forward differences.

Once P: and P; have been evaluated, PT may be obtained as

PT'PT + Pr (30)

Obviocusly, the same result is obtained by coding F',r in one single
equation:

X X 1 B
A - A - A
P L TR A M T I R M LR I o T I (393
X X X Y Y Y
- -
¢ D (A u  mhuy,) ¢ D (A veo=d Vy,) ¢ C o0

This shows that the scheme does not belong to the class of frac-
tional step schemes (12,13]. The initial separation of the equa-
tions was introduced to allow two independent sets of charac-
teristics to be defined, one in the (X, T) plane and the other in
the (Y, T) plane. Attempts of the late fifties and early sixties
to define anJd wuse an optimal set of three-dimensional charac-
teristics proved to be cumbersome, difficult ¢to apply and, at
times, wunctable or inaccurate. The present approach may not be
appealing froz a formal viewpoint but it fulfills the purpose of
defining the domain of dependence of the point to be evaluated as
far as pressure and any other variable having the same domain of
dependence as the pressure are concerned.

1. Ibcee-dimensional, ateady, supersonic flows

Three-dimensional, steady, supersonic flows must be
treated in a different way, although the basic concepts remain
unaltered. This is because the physical nature of the three 1in-
dependent variables is the same, despite one playing a time-like
role. We begin by observing that, after introducing two angular
variables, o and n, defining the direction of the velocity vec=-
tor, the Euler equations can be written in the matrix form:

T -
T + Afx + Bf! + C kPT=0 (38)
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where
. P r 3 - k"
: "1y %42 %43 1 12 *13 L1 )
fzlo], A = 2., %2 g 1. - D> 021 022 0|, es ¢, 'k = k2(39)
3 k_
by s B ' 3 °31 0 % 3 3
We can split the system (3b) into two systems:
Px + a + a $ A __0N_+ 0 s 0
b i B 12 X 53 3 1
X X
- k P 40)
°2 * %21 x * %22% L il 4 e (%0
X X
nT + .31PX + lzznx + C_=- kBPT s 0
and
P! + b P + b__o * B..H = 0
¢ 5 ¥1-1X 12 % 13 Y
§r o pilp g k9 s 0 (41)
b o 21 Y e Y il
Y
n! - b3‘ P! + b22"¥- RBPT s 0

so that, if each equation (40) is added to its counterpart in
(41), (38) is obtained again, provided that

et T JsiEE TR G U e ST DA Ny ® Ny + N, (42)

For each new system two values of A can be found, defined by

i 8 =2 8. )0 (5%3)

X 2 X
g K Kk )A »
R L TR TRt T e el T i L b b St b L T o

G B 0 RS o W
and

(3 1= 0n b kzya’.(u

K <
i 1*%22*%13%5*%2 1*944922"0

$. aN B 0 (44
13 31" 12 g¢i%9 . (88)

respectively, and a third value, defined by

X
A
3:&22 (45)
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andg

Y e

A_szb (46)
3" a2

respectively. The direction defined by A plays the role of a

streamline in (X,T) plane or the (Y,T) glanc. Non-trivial sets

of multipliers can be found in connection with each of the ) to

build two sets of compatibility equations. Specifjically,

nx s a lx u s l!
11 T " i 227 4
X Y
- - “
UXZ H 112 uiZ = b12 (47)
ux z =a u! s =b
i3 13 i3 13
for is1,2, and
X Y
H31IO “3\'0
st s N A b ket » Eoves) (48)
32 31 3 22 32 31 3= B8
X Y
a K_a b k_b
*13"%21 * "2%22 ¥33"°21 * *2°22
The compatibility equations, ir. which we write f11 and rll in-
steaa of fx and fx (see Section 2), are
SR | X X X X
P A - Ao P A
a ( T + 1P11) a12(°T + A XI) 113(11T + 1"11) * tulJchO
X X X X X X
- P AP - A - A 4 4
a ( e * 3, x2) 112(01 2°x2) ali(nT + anZ) + uEJcJ'O (49)
- R X X X X X
-8 P Q ) 4
( I ¢a22913)+u32( " *122013)¢"33(nT +322nx3) + uajcjso
where
nxlu B.. .k = _k exsa k Kk (50)
R T S s 213" %31%2
Similar equations can be written with respect to Y. From the
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first two equations (49) we get one equation for P::

X X X..% X X X
A A - A . - 1
2a PT e a ( 1Pll + ZPXZ) .12( ‘oll ZGXZ, (51)
X X X
- - ‘ -l
113(l1n‘1 lznxz) e ( 2 )0130
and another equation for the unknown ‘X :
X X l X X
- - h ‘ -
2¢ <+ a (I1Px1 2’!2) l12( Oz ¢ 2012) (52)
X X X X
-l13(11n“ + lznxz) + t(n1J + uzj)cJIO
where
Ox-u ox + 4 nx (53)

2T 13 2
Finally, considering P: as defined by (51), the third of (49)

yields
X X, X X X X
- = “)
v =8 (PT + aZZPXS) + "32.22°X3 + u33a22nx3 + :"3301 0 (5
where
. e B | I
v suszar + u33nT (55)

and ux nx can be obtained by solving the system (53),(55). One
ahoulg procccd in a similar way for the second set (41) and then
apply (42) to get P ad_ snd w_.

9 T

The rules for discretization are the same as outlined in
Section 3. The and f__ approximations coincide with f and

fy1 if the signs o? 11 and 513 coincide; otherwise, they will

coincide with fxz and f!a

In the simple case of Cartesian coordinates with no
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stretching,

l1‘l0/t, 3121711.31310
a 2/ "2 a 9 0, k 0
"1 el g Ml T st e L
13‘-0. .32-0 ’ 133-0, k33121n
b1‘-n/¢, blzso ’ b13tv/=
bz‘-o. bzzln » b23-0, k2-121a
b31l.21‘ b32'0 N b33.n| k3ll21ﬂ
and-all clso. Then,
X X X : 2 2 2l 1/2
Ay=(ot8 )/, B 'Lz Tl & P T R L
. w
Y Y b i : 2 2 2 1/2
iia(n!l )/, ] a‘; [w (1 «# n )/a =1]
W
X X
=k -)
g ¢ ik | 1 g
X : 4
uias-v/: "12'0
uiano ut_l-le
for i=1,2, and
X b ;
H31l0 u3180
ux s=a 0 1 s=a_ ( ¢ + 1)
; 7 Syt l o | by &
X 2
u33 = 121(0 + 1) u33 s a21na
so that .
- 20 -
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cx z ax/‘ ’ a! =z l'/: (61)
.x s vo:/: ’ .I H vn;/¢ (62)
X Ai_ 2 X X Y Ai_ Y 2 1
v s (e + 1)n_=ono_J, ¢ = [onn_=(n" + 1)o_]
2 T T 2 .
Yw YW (63)

All ccaplications appearing in the general formulation
above depend on the geometry of the computationel grid and should
not be relevant from a physical viewpoint.

8. Ieats and results

Some examples should make clear the ability of the scheme
to represent difficult transonic flows. We will begin with two
one-dimensional cases, one of which is "nsteady and the other
steady and supersonic.

(INAL PAGE |
POOR QUALITY

|
| |
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Fig. 1

The first example is illustrated in Fig. b, which shows
the Mack nuober distribution over a stretch of an infinite duct
having a variable cross-section (Fig. 7). 1In the portion of the
pipe ccnsidered in the figure the flow, which started from rest
and passed through an unsteady evolution, has already reached a
steady state. A shock was originated and moved to a final steady
position. The calculation used to get Fig. 8 has no provision

g L e
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Fig. &

for fitting a shock; therefore the flow is homentropic.
Nevertheless, the results are surprisingly close to the results
obtained using a shock-fitting technique (Fig. 9) which, in turnm,
coincide with ¢the close-form solution of a steady, quasi-one-
dimensional flow. A single figure cannot provide too many de=-
tails; a more minute analysis can be found in [10] where the en=-
tire range of Mach numbers is explored and the unsteady evolution

leading to the asymptotic steady state ir analyzed. I would like
to warn the reader against concluding, fro» a glance to Fig. &,

that the A-scheme has shock=-capturing virtues; such a feat is
made impossible by the inability of the scheme to provide entropy
Jumps. It is undoubtedly true, however, that the scheme remains
stable and accurate under very exacting transonic c¢ircumstances,
even when the computational mesh is very coarse; in Fig. 10
asymptotic results obtained with the mesh of Fig. 8 and a muech
coarser mesh are shown, and no deterioration can be observed.

The second example is illustrated in Fig. 11, which shows
the Mach number distribution in a channel opening into vacuum,.
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Fig. 9

The flow at the channel inlet is uniform; its Mach number equals
1.04, The calculation [14) is performed advancing on a grid of
which Fig. 12 shows typical l.nes. On each grid line crossing
the channel, 21 points are considered. In this case, the accura-
cy of the scheme and its ability to handle difficult situations
is demonstrated by the perfect splitting of the computed flow
into two regions, a simple wave adjacent to the lower wall and a

source-like pattern in the re . of the channel. Such a splitting
is due to the fact that no down-running characteristic can reach

the lower wall. In Fig. 11, line AB is the first significant
down-running characteristic.

An impressive example of the ability of the scheme to
handle two-dimensional, wunsteady flows is shown in Fig. 13. In
it, we see the steady shock-and-isobars pattern reached asymptot-
ically about an ablated blunt body via an unsteady calculation.

The free stream Mach number 1is 12, The computatiocnal grid
(wrapped around the body by conformal mapping (15])) has 30 inter-
vals along the body and 15 intervals between body and shock. In

- 23 -
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Fig. 10

the figure, in addition to isobars, two sonic lines are shown. A
thin suhsonic layer appears in the concavity of the body. The
bow shock shape matches the one obtained experimentally (10].

Finally, an example is given of the application of the
technique to three-dimensional, steady, supersonic flows. In
Fig. 14 the bow shock and the isobar pattern about an elliptic

o
cone, with a 14:1 axis ratio and a leading edge angle of 20 are
shown. The free stream Mach number is 2 and the angle of attack

is equal to 5°. Despice the coarseness of the computational mesh
(24 intervals around the body and 12 between body and bow shock)
the pressure distribution on the beody is remarkably accurate, as
shown in Fig. 15. The results are part of an extensive series of
tests involving vehicle shapes of increasing complexity, to be
published in the near future.
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