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Mbstract

Effects of three different models for the
treatment of subsonic boundary conditions, applied
to the problem of flow in a channel with a bump,
are discussed. A preliminary discussion of the nu-
merical treatment of the corners is presented.

1. Introduction

Experimentalists have learnt to appreéia:e

the {importance of a proper installation, a careful ..

calibtration of instruments and an analysis of en-
vironmental interferences., Data obtained by the
Wright Brothers on their historical wind tunnel en-
abled them to evaluate the possibility of flying;
by current standards they would probably not even
fit 1in what enginecers mention as "ballpark" range.
The designer's problem is efficiency; errors larger
than 1% in basic information should not be tolerat-
ed.

Surprisingly, a large amount of numerical
work is far from reaching such standards. More
surprisingly, very little seems to be done to im-
prove the situation, and this is so much more dis-
turbing since some claims are occasionally made
that numerical analysis should replace experimernts.

The present paper is a modest attempt to
show a poSslble approach to understand reliability
of numerical analysis. It is shaped as a series of
numerical experiments. Empiricism, however, is not
suggested, Empiricism is manifested by juggling of
arbitrary coefficients, mesh refinements and, mani-
pulation of arbitrary additional terms. The work
described 1in this paper, instead, is inspired by
the ideca that a numerical prccedure describes, more
or less accurately. a physical model and that the
understanding of such a model will lead us teo judge
whether or not our calculation makes the physical
sense which it should. To go back to our former
compariscn with experiments, a typical wind tunnel
correction inspired by the same criterion te which
fue presenl study is inspired is the wall correc-
tion for viscous and transonic effects.

In preparing the present paper, a very
large amount of cascs were computed, expressing
different lines of tnought and, for each one of
them, tests of different parameters, A detalled
discussion transcends the limits of a presentation,
Therefore, I will 1limit myself to showing the

,4/55 & - b

| 12y §
guidelines of the investigation, and some of its
nighlights, without attempting to be exhaustive and
even to draw conclusions which, as it will appear
from the context, could, at this stage, still be

" hasty and inappropriate.

2. A channel flow

~ On September 18-19, 1979, a Workshop was
held in Stockholm, the object of which was the com-
parison of results obtained by using different nu-
merical methods on two assigned problems, the

" second of which was formulated as follcws.

"Internal two-dimensional flow through a
parallel channel having a 4.2% thick circular arc
'bump' on the lower wall. The ratio of static
downstream pressure to total upstream pressure is
0.623512 (corresponding to M=0.85 in {isentropic
flow), and the distance between the walls is 2.073
times the chord length of the bump."

Obviously, the emphasis of the assignment
was on steady solutions and transonic flaw with 2n
imbedded shock. The latter requirement adds a
number of complications to the problem of a subson-

. 1ic, steady, isentropic flow in a channel. The as-

signed data were so close to producing a choked
flow that some of the methods generated a choked
flow (all potertial fully conservative methods) and
others did not (all potential nonconservative
methods and Euler solvers, and Hafez's artificlal
compressibility method). Scattering of results and
conflicts Lbetween conclusions are not new in our
short history of numerical analvsis. As I recall,
the first numerical contest was inspired by Morton
Cooper in 1§65, a calculation of blunt body shock
layers for an ellipsoid of revclution with a 2:1
axis ratio, at a free stream Mach number of 3 [1],
Techniques ranging from truncated series expznsions
to integral relations te inverse methods offered a
variety of results. Comparing them with what has
now been accepted as standard, that I3, a secand-
order finite difference calculation with bow-shock
fitting, we see that methods focussed on the stag-~
natfon 1line gave good results near the stagnation
line and poor results away from it, whereas methods
focussed on the sonic line had the opposite
behavior [2). The contest clea'ly showed a need
for a different numerical approach, more general
and powerful.,

The objeet of a Workshep 1s, 1indeced, to
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premote ﬁcalthy competition and unrestrained de- 2 f‘ -3f +f
banes; not to solve problems or to emit verdicts; a 2 3

Workshop can be considered successful {if {1t din- where values at three adjacent points, from the
spires new, and decper, work. In studying the boundary 1in, are denoted by 1,2 and 3, sequential-
results of the Stockholm workshop, I decided to ly. :

take a closer 1look at the channel flow, at least

limitedly to a certain brand of Euler solvers. " 3. Computational grid
Obvious questions to be answered were: The grid suggested for the Stockholm
1) Is a steady stats reached? workshop was a Cartesian grid, normalized between
_ 2) Do results depen: on the type and size upper and lower wall of the channel, and stretched
of the computational mesh? from -= to += with an strong accumulation of grid

3) How do different treatments of the left lines over the bump. I used this type of grid,
and right:'boundary of the computed region affect forcing two grid lines to originate exactly at the
.< the results? : > R ’ :

§) Can any detail be provided of the flow | 1HHEHH 1

necar the leading and trailing edges of the bump? N i ]
| s {1 ]

Note that I abstain  from mentioning in- juas 440
tegration schemes. Relative virtues and shortcom- ges -
ings of such schemes, including their ability to | |41 ~~‘N~'
capture shocks, their numerical diffusion and 3 JJ”‘ JJJ~
dispersion, eta., are out of context. They cannot .. b i e A B & ok .
be tested in the channel flow problem unless the Fig. 1

questions above have been exhaustively answered,
On the othcr hand, there are general features of leading and trailing edges (Fig. 1).
the flow which should be revealed and which should

provide clues to the questions, regardless of the I also adopted a different grid (shown in
integraiion scheme having been used, at least so Fig. 2) which is obtained using a conformal mapping
long as the flow is far from transonic. of the Kirman-Trefftz type:

' I decided, thus, to limit & preliminary in-

vestigation to subsonic, 1isentropic flows, and I
adopted the MacCormack, predictor-corrector scheme
to the equations of motion in the form:

{ Y8

z -1 |g -1

z+1 g+
J

(3)
5 e : where z=x+iy is the complex coordinate in the phy-
'Pt + VVP +y VvV V=0 sical plane, ¢=f(+in 1is the complex coordinate in

. . the mapped plane, and & 1is related to the
(1) thickness-to-chord ratio of the bump, 1, by:

-> - -
Vto(V.V)V +Tvwp =0

. (4)
where P {s the logarithm of the pressure, V the
velocity, T the temperature and y the ratio of f ’ c%
specific heats. Pressure and temperature are re- el =
o @
lated by sl % E
|
y Pz—T-1nT (2) qIrL 2
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For subsonic flows, the MacCormack scheme is safely g: @«
applicable to (1) and has the advantage of great am
simplicity. To maintain second-order accuracy at ; EB
the boundaries, where the MacCormack scheme can be ' Fig. 2
epplied only at the predictor (or corrector) level,
for want of external data in the other level, any The n-coordinates are normalized between the wupper
derivative at such a level {s discretized by and lower walls, and the ¢{-ccordinates are
diffcrences of the type: sitretched in the horizontal dircction as 1in ‘he
4 ' Cartesian grid. Calling u and v the velocity com-

ponents in the direction of the Cartesian axes for




the first grid, and 1in the direcction of the
[ = constant, n = constant axes for the second
grid, it turns out that v vanishes exactly along
the wupper wall when the first grid {s used, and
along the lower wall, when the second grid is used.
Consequently, one may expect the calculation to be
easier and, perhaps, the results to be better along
the wall where v vanishes. In any event, the boun-
dary conditions at rigid walls are enforced by
first integrating the Euler equations as at interi-
or point-, .ad then by correcting the pressure to
satisfy ' e vanishing of the velocity component
normal to the wall [3,4). Along walls wnere v {is
not 1identically =zero, the u-momentum equation is
replaced by an equation along the tangent to the
wall. »

Calculations are actually performed in a
computational plane, (X, Y), where the grid is
evenly spaced in both directions. If the first
grid 1s us2d, additional coefficients appear, con-
taining dX/dx, 3aY/ax and 3Y/3y. If the second grid
is used, two independent sets of additional coeffi-
cients and terms appear, the first due to normali-
zation and stretching, and containing
dX/dg, aY/ag, 3aY/an, the second due to the mapping,
and containing

I,u-_d_i _ _dlogg
Bely el b o wid, s (5)

The major physicazi difficulty is offered by
the 1leading and trailing edge corners, where the
flow stagnates. In using the first grid, the dif-
ficulty 1is reflected 1in the discontinuity in the
slope of the lower wall (which affects all points
on the vertical grid lines 1issuing from the
corners). If the second grid is used, a mapping
singularity appears at the corners and the equa-
tions of motion, expressed in terms of { and n, be-
come indeterminate. In both cases, thus, some spe-
cial treatment must be given to the corner points
and their immediate neighbors. If the grids are
laid to avoid passing through the corners, the ef-
fect of neglecting them has to be evaluated.

4, Inlet and outlet boundary conditions

Another critical issue regards the treat-
ment of the arbitrary computational boundarics
which delimit an inlet and an outlet to the region

of interest. Such boundaries cross regions of sub-
sonic flow and some physical model is required to
supply the information from outside which {3 neces-
sary. New interest seems to have arisen on this
problem in recent times, but the physical implica-

tions of modelirg a subsonic boundary seem not to °

have been grasped firmly yet. The problem of sub-
sonic boundarics cannot be disassociated from the
problem of choosing {nitial conditions [5). In
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“where the index o denotes stagnation values in

internal flows, several simple physical models can
ve adopted, of which here is a sample:

1) The region of interest {s a channel of
a finite length, connecting two infinite cavities;
the gas is at rest everywhere; at t=0, the stagna-
tion pressure 1is increased in the cavity at left,
until a given value is reached, and then kept con-
stant,

2) The same setting is uscad, but at t=0
the pressure in the cuvity at right i{s decreased
until a given value is reached, and then kept con-
stant;

3) The channel is infinitely long and it
contains: a gas at rest; at t=0, the channel is ac-
celerated towards the left, until a cruising spced
is recached.

In the first two cases, two models of tran-
sitions from the interior to infinite cavities are
adopted at each boundary point on the left and on
the right. As explained in [5], one can stipulate
that the fictitious flows in the transitions are
quasi-steady (the 1length of the transition being
assumed as vanishingly small), so that, for the
purpose of closing the boundary data sets, steady
equations of motion can be differentiated in time.
Cu the left, the total pressure and the slope of
the velocity vector at each entry point are as-
signed. The latter condition brings in the largest
arbitrariness in the model. Physically, one can
always Justify a choice of slopes by assuming that
the inlet is equipped with a series of guiding
vanes. In the present case, for example, one can
assume that all velocity vectors are parallel to
the rigid walls; this is obviously not the case for
an infinitely long channel, and the effect of such
a restrictive assumption on the rest of the flow
has to be evaluated.

-

The equations used at the inlet are:

1) the definition of total pressure, dif-
ferentiated in time under the assumption that the
total pressure itself may be a function of time:

2
T Pt +u(l +0) ut = TP (6)

o ot

the

infinite and o = v/u {s a prescribed

value,

capacity,
2) a left-running characteristic eguation:

X (7

aP -yu
t Y
where N {s the left-hand side of 17) a3 computed by
the standard integration routine,

The outlet model i3 simpler, since the v-
component of the velocity {s determined on the
basis of intcrnal {nformation only ([06); in the
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present case, it {3 sufficient to prescribe the
exit pressure as the pressure in infinite capaclty,
and compute the u-comhoncnt of the velocity accord-
ingly. The equations are, thus:

1} the continutity equation:

pu 't ¢ U = o_u_P.t - to_ u_c (8)

2) the definition of total pressure:

+ u_(1 + cf) u_(9)

T I’t +u ut .V v‘ s T_P "

-t
3) a right-running characteristic equa-
tion:

a P‘ + v ut = R (10)
where R has the same meaning as in (7). In (8),
is computed by the standard
routine; u is unknown but it can be eliminated
easily. N;turally. here too there is an element of
arbitrariness, whose effects have to be checked.
For example, in an {infinitely long channel, the
pressure across the channel is not exactly constant
at a finite distance from the bump.

The 1inlet and outlet Dboundaries  just
described allow perturbations proceeding from the
interior to interact with the conditions in the in-
finite cavities. For each perturbation reaching
the boundary, a new perturbation is generated and
transmitted in the opposite direction. The process
will eventually reach an asymptotic stcady state,
but the number of waves of a sizeable amplitude
moving back and forti can be very large.

The third model relies on a siuple idea: if
the motian were one-dimensiornal, all perturbations
would travel outwards as simple waves, at the end
of the acceleration phase. A simple wave is easy
to describe using information from the interior and
the constancy of one Riemann invariant from the ex-
terior. In a two-dimensional problem of {internal
flow, the waves cannot be exactly simple waves, but
no major errors are expected if the velocity vector
is forced to be parallel to the rigid walls at the
inlet. The simple wave equations at the inlet are
modified as follows: . - ’

2.1/2
u

a P‘ -y (1 +0) = R

t
(1)

2.1/2
u

a Pt +y (1 +0) =0

t
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Similarly, at the outlet:
P
a % + yu uth = R
(12)
P -
a t yu ut/q = yv vt/q

where v. {s computnd by standard routines and q 1s
the modulus of the velocity.

5. Two-dimensional calculations with models 1 and 2

We describe now the general features of
calculations made wusing the first iwo models men-
tioned in Section ". One of the problems presented

' by a study like the present one i{s the large amount

of data produced by a single run and the necessity
for organizing them 1in a series of simple plots,
easy to interpre’. 1 decided to store the follow-
ing information:

1) at every step, Pand u on the lower
wall, at the inlet, at two selected points, and at
the highest poirt on the bump,

2) at every step, location of selected
i{sobars on the lower wall (to build an isobar pat-
tern on an (x,t)-plane), and '

3) at selected steps, P, uand v at all
the grid points; this information can be easily
processed to provide Mach numbers and total pres-
sures.

The basic geometry has been defined as a
channel with a width equal to 2, containing a bump
which extends from x=-=1 to x=1 and which has a max-
imum thickness of 0.2, This defines a corner angle
of 157.380. and §=0.8743. To avoid initial cowpli-
cations at the corners, so that our attentlion can
be focussed on the wave propagation and the effects
of boundaries, we use a smooth lower wall which can
be easily obtained from the mapping function by de-
fining the wall as the image, in the 2-plane, of a
line n = b, where b is a constant greater than O,
The same definition can be transferred to the code
which uses the Cartesian grid. In Fig. 3 there are
some shapes of the lower wall for different values
of b; one can observe that, for b less than 0.01,
there 1s no practical difference between the wall
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Fig. 3

so defined and the wall corresponding to b=0,




We begin with a very smooth wall, defined
by b=0.1, The computational mesh has 7 intervals
between the rigid walls and 30 intervals in the x-

“Irection, strctched between x=-2,345 and x=2,345;

16 intervals cover the bump region, The stagnation
pressure 1is raised (in the first method) or the
exit pressure is lowered (in the second method) to
produce final values of the Mach number "at infini-
ty" of the order of 0.1. A plot of P vs., time at
the 6th node on the lower wall is shown in Fig. 4,
for the case where the first mehod is applied. The
oscillations are obviously produced by waves going
back and forth along the channel (at such low Mach
numbers, the spred of propagation is practically
the same in both directions, and the phenomenon
shows a well defined frequency); one disturbing

" feature of the model is the smallness of the damp-
ing factor.
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A similar pattern appears (Fig. 5) using
the second model; the oscillations are smaller in
amplitude but still damped very slowly; Fig. 6
shows u(t) at the same node ano from it we sce that
the velocity presents smaller oscillations but that

o steady state (s far from having been reached

after 2000 computational steps (t=146).

Such details are hard to detect from plots

Fig. 6

of 1level lines at a given step. For example, {so-
bars and i{somachs at step 1000 (Figs. 7 and 8) look
very rcasonable, although the {sobars would not
pass a closer scrutiny, due to a clear lack of sym-
metry. As a matter of fact, if we plot P at the
6th node vs. P at the 24th node as they evolve 1in
time, we seec that, after 2000 steps, the plotting
Jine still oscillates between -0,00283  and
-0.00353, whereas at both points P should be about

X T
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'An analysis of these oscillations should
take at least two elements into consideration: the
first i{s the Mach number effect, and the second {is
the {influence of geone*ry. To have an idea of the
Mach number effect, let us rerun the above cases
«for a Mach number of 0.5. Plots of P and u vs.
time are shown in Figs. 9 and 10 for the first
model; Fig. 9 should be compared with Fig. 4., Os-
cillations still appear but they seem to be damped
much more quickly. A similar behavior is seen in
Figs. 11 and 12, which refer to the second model.
One should, however, take care not to draw hasty
conclusions from Figs. U4 and 9, or Figs. 5 and 11,
The scale of P in Fig. 9 is 20 times smaller than
in Fig. 4, and in Fig. 11 {s 40 times smaller than
in Fig. 5; the correct conclusion is that very
small pressure waves take a long time to be elim-
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fnated., The patterns of level lines (isobars in -

Fig. 13, isomachs in Fig. 14) are much better than
their counterparts for M=0.1 (Figs. 7 and 8). Even
the v=constant lines, which are very critical, look
good (Fig. 15). At this stage, iL pays to take a
look at lines of constant stagnation pressure (Fig.
16); here a new element appears. In fact, the
stnanaticn pressure is practically constant every-
where, but {t drifts away in the vicinity of the
"corners”™ (or whatever remains of them in the
smoothed wull). The stagration pressure is a very
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sens'*'ve parameter, indeed, and it is the proper
indicator of local 1{inaccuracies, when a steady
state is apparently reached numerically, In this
case, it 1s obvious that inaccuracies should be at-
tributed to the vicinity of a singular point of the
mapping and to the consequent worsening of the
metric.
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Bafore golng into the difficult problem of
the corner singularity, {t {s proper to devclop
more familiarity with the wave propagation pattern
for models 1 and 2, and their possible reclationship
with the existence of a bump. We have scen, 30
far, that waves tend tc continuc swaying back and
forth, with very 1little damping, at low Mach
numbers. To Judge whether the geometry, and par-
ticularly the prescnce of a bump, has anything to
do with thg wave behavior, we examine two cases.
One is an obvious choice, a straight channel with
no bumps. It can be easily obtained from either
the code using the Cartesian grid or the code using
the mapping by setting the thickness of the buap
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Fig. 18
equal to zero.

Here are some results, for comparison with
the previous cases. The first (Figs. 17 and 18)
uses model 2, with a Magp number of 0.1, Compare
Fig. 17 with Fig. 5 and Fig. 18 with Fig. 6. The
sccond uses model 2 again, but with a Mach number
equal to 0.5 (Figs. 19 and 20)., Compare Fig. 19
with Fig. 11 and Fig. 20 with Filg. 12. Note that
in this casc the steady flow in the channel {s uni-
form, with a pressure cqual to the exit pressure;
the transition from stagnation pressure (P:=0) to
the channel pressure takes place in the fictitious
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transition which has been modeled at the inlet, In
Figs. 21 (to be compared with Fig. 9) and 22 (to be
compared with Fig. 10) the first model 1s wused.
Here the stagnation P is raised to a positive value
and the exit P remains equal to 2zero; the latter
1s, thus, the asymptotic value of P in the whole
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All these patterns are similar to the ones
with the bump: we can conclude that the oscilla-

tions are produced by the models of the boundaries

“tively.
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Fig. 22

and that they have a physical interpretation of
their own, unrelated to the geometrical coaplica-
tions of the channel.

6. Two-dimensional calculations with model 3

We expect calculations made using the third
model of Section 4 to converge to a steady state
much faster than the previous ones, since the ini-
tial perturbation affects the entire flow field and
whatever is not pertinent to the final state is
promptly eliminated through the boundaries which,
in this model, are not reflective. The expecta-
tions are confirmed by Figs. 23 and 24 (which
should be compared with Figs. 4,5 and 6, respec-
Note also, in Figs. 25 and 26 (isobars and
isomachs, respectively) how close the pattern is to
the symmetric pattern of a steady state; cowmpare
these figures with Figs. 7 and 8. We omit present-
ing results for M=0.5; they are equally gnod and
not dissimilar from the ones obtained wusing the
second model, although a close inspection may re-
veal some advarntage in using the third model (for
example, the v=constant lines appear more symmetri-
cal than in Fig. 15).

At this stage, we conclude that:

1) any one of the three models is accept-
able as the description of a physical evolution,

2) any one of the threce models is accept-
able for the evaluation of a subsonic, steady
state,

3) 1in any of Lhe three models the computa-
tional region can be limited to a small portion of
the channel, bracketing the bump,

4) the third medel, however, provides fas-
ter convergence to a stcady state, particularly for
low Mach numbers,

Therefore, all further invastigations wi))
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be conducted using the third mocdel.
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1. The corner problem

) We may turn now to the analysis of the dif-
ficulties arising when the lower wall has an actual
corner, Probably, the first {dea which may come to
one's mind consists of performing successive calcu-
lations, with all parameters unchanged except b,
Let us recall that all the preceding exercises have
been performed with b=0,1, which corresponds to a
rather smocth lower wall. What happens {f b is re-
duced to 0.01, 0,001, and so on?

For b=0.01, and M=0.1, the P(t) and ult)
patternas do not show sizeable differcnce from the
ones of Figs. 23 and 24 (b=0.1); the {isovars and
i{somachs plots, however, start showing signs of de-
generation near the corners, particularly the one
on the left (Figs. 27 and 28). The region of high
pressure tends to spread to the left, and ihe
minimum Macn number {s dJdefinitively misplaced.
Minor changes in the rest of the plots can be as-
cribed to consequences of the puor accuracy near
the corners. Although the calculation can be per-
formed foir* much smaller values of b (even for
b=0,0005) without catastrophies, such results can-

.
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not be considerced realistic.

It {s known [6) that the flow fleld at a
corner s stnﬁulnr. 30 long as the corner angle is
larger Lhan 90 . Since Lthe velocity vanishes at
the corner, {t wlll behave, in {ts {mmediate vicin-

fty, a5 the velocity of an {incompressible flow,
Now, for the present case, the velocity of an in-




compressible flow along the lower wall. is propor-
.tional to the G of (5). To learn more about u and
i{ts dependence on b, let us plot, in Fig. 29, a
serles of curves of G(x) for different values of b.
In the sam( flgure, arrows indicate the approximate
positiona of the nodal points for the computations

[
o

L
Flg. 29
shown in the preeeding Sections.

The qualitative behavior of u 1is expected
to follow the trends of Fig. 29, even in a compres-
sidble, unsteoady flow. Similar considerations can
be developed for P. At the corner itself, the only
.Quantity to be computed is P, since u und v vanish
identically. For all practical purposes, a reason-
able cstimate of P is obtained from the definition
of the stagnation pressure, applied to values aver-
‘aged on the 3 points surrounding the corner. Such
2n cstimate tends to become more and more accurate
2s the flow approaches a steady state. The diffi-
culty, thus, does not lie at the corner but at the
neighborirg points. From Fig. 29 it is clear why a
derivative such as u may be :pp;oximated by a
2-point difference if bz0.1 but the approximation
is very poor {f b=0.01 and it becomes disastrous {f
b=0, On the other hand, the values at the corner
point cannot be Jjust skipped because, if the
derfivatives at the nelghboring points are approxi-
mated by one-sided differences only, all connection
between the two sides of the corner {s lost and, If
the derivatives are approximated by differences
between the two rneighboring points, again the ap-

Fig. 30
‘proximation is poor, as we can sce from Fig. 29.
If the Cartesian grid is used, the diff1-

Plots of the slope of
30 for

culty obviously persists,

the lower wall arc shown in Fig. various

valucs of the parameter b. Agaln, for b:z0 or close
to it, the values at the corner can be dectermined
without difficulty but the derivatives at the
neighboring points are hard to approximate. Corse-
quences similar to the oncs observed in preceding
Scctions wre visible in Flgs., 31 and 32, where
isomach lines are shown for the cases, bz0,1 and
b=0.01, respectively.

Fortunately, the influence of the corner
singularity {is limited to a very small reglon sur-
rounding the corner; in the grid used in our calcu-
lations, the departure of G from the very smcoth
curve, relative to b=0.1, occurs only inside one
cell and differences between the curves relative to
b=0.01 and b=0 appear only in a negligible portion
of the cell. The motion in the neighborhcod of the
corner must be considered as ‘ae same which would
take 'placc in the prescnce of a fairing, such as
the one defined by b=0.1, _lus a sort of triangular
region, comprising the corner, where the flow stag-
nates in a succession of quasi-steady states,
if the gencral motion is unsteady. Such a region
should be considered only to evaluate the pressure
at the corner, which should not be used, however,
to compute derivatives at the neighboring points.
It seems that analytic expressions for P and u
within the corner cell, based on "reasonable" solu-
tions for incompressible flow fail to provide the
proper approximations to the derivatives, »9erhaps
because their domain of validity is too swall as
compared with the size of the cell. A safer ap-
proach could consist of replacing the values of g
and ¢ at the corners with their values at the
corresponding Boint defined by b=0.1, say, in this
way providing a localized fairing which should re-
flect the physical behavior, maintaining a gcometry
which would not anfltct with continuity require-
ments and producing values for pressure sand veloci-
ty components which could be used directly for the
approximation of derivatives. More on this sub-
Ject, including a study of different corner angles,
down to the limiting (and very special) case of a

even
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Yo corner, will appear in a forthcoming paper,
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