research

Numerical studies of 2-dimensional flows

Abstract

A formulation of the lambda scheme for the analysis of two dimensional inviscid, compressible, unsteady transonic flows is presented. The scheme uses generalized Riemann variables to determine the appropriate two point, one sided finite difference approximation for each derivative in the unsteady Euler equations. These finite differences are applied at the predictor and corrector levels with shock updating at each level. The weaker oblique shocks are captured, but strong near normal shocks are fitted into the flow using the Rankine-Hugoniot relations. This code is demonstrated with a numerical example of a duct flow problem with developing normal and oblique shock waves. The technique is implemented in a code which has been made efficient by streamlining to a minimal number of operations and by eliminating branch statements. The scheme is shown to provide an accurate analysis of the flow, including formation, motions, and interactions of shocks; the results obtained on a relatively coarse mesh are comparable to those obtained by other methods on much finer meshes

    Similar works