295 research outputs found

    Eficàcia provada de la quimioteràpia basada en la doxorubicina liposomal no pegilada

    Get PDF
    Els limfomes són un conjunt de malalties canceroses que afecten el sistema limfàtic. Entre aquests hi ha els limfomes de tipus no hodgkinià, la incidència dels quals ha anat en augment en les últimes dècades. El tractament per quimioteràpia ha inclòs, normalment, la doxorubicina convencional però s'ha mostrat una menor toxicitat cardíaca amb la doxorubicina liposomal no pegilada. Aquest estudi, desenvolupat conjuntament per l'Hospital Universitari Germans Trias i Pujol de Badalona i l'Hospital Josep Trueta de Girona, ha provat l'eficàcia d'aquest tipus de tractaments contra limfomes no hodgkinians.Los linfomas son un conjunto de enfermedades cancerosas que afectan al sistema linfático. Entre éstos están los linfomas de tipo no hodgkiniano, cuya incidencia ha ido en aumento en las últimas décadas. El tratamiento por quimioterapia ha incluido, normalmente, la doxorrubicina convencional pero se ha mostrado una menor toxicidad cardíaca con la doxorrubicina liposomal no pegilada. Este estudio, desarrollado conjuntamente por el Hospital Universitari Germans Trias i Pujol de Badalona y el Hospital Josep Trueta de Girona, ha probado la eficacia de este tipo de tratamientos contra linfomas no hodgkinianos

    A simple and efficient kNN variant with embedded feature selection

    Full text link
    [EN] Predictive modeling aims at providing estimates of an unknown variable, the target, from a set of known ones, the input. The k Nearest Neighbors (kNN) is one of the best-known predictive algorithms due to its simplicity and well behavior. However, this class of models has some drawbacks, such as the non-robustness to the existence of irrelevant input features or the need to transform qualitative variables into dummies, with the corresponding loss of information for ordinal ones. In this work, a kNN regression variant, easily adaptable for classification purposes, is suggested. The proposal allows dealing with all types of input variables while embedding feature selection in a simple and efficient manner, reducing the tuning phase. More precisely, making use of the weighted Gower distance, we develop a powerful tool to cope with these inconveniences by implementing different weighting schemes. The proposed method is applied to a collection of 20 data sets, different in size, data type and the distribution of the target variable. Moreover, the results are compared with previously proposed kNN variants, showing its supremacy, particularly when the weighting scheme is based on non-linear association measures and in datasets that contain at least one ordinal input variable.NextGenerationEU Funds, Programa Investigo, CT36/22-04-UCM-INVMoreno-Ribera, A.; Calviño, A. (2023). A simple and efficient kNN variant with embedded feature selection. Editorial Universitat Politècnica de València. 237-238. http://hdl.handle.net/10251/20179123723

    Joining polynomial and exponential combinatorics for some entire maps

    Get PDF
    We consider families of entire transcendental maps given by Fλ,m (z) = λzm exp (z) where m ≥ 2. All these maps have a superattracting fixed point at z = 0 and a free critical point at z = −m. In parameter planes we focus on the capture zones, i.e., we consider λ values for which the free critical point belongs to the basin of attraction of z = 0. We explain the connection between the dynamics near zero and the dynamics near infinity at the boundary of the immediate basin of attraction of the origin, thus, joining together exponential and polynomial behaviors in the same dynamical plane

    Pautes i rúbrica per a l'activitat "Taula de desenvolupament psicomotor i HOME"

    Get PDF
    Aquest document inclou orientacions per a l’activitat pràctica "Observació i valoració del desenvolupament infantil i del context familiar: Taula de Desenvolupament Psicomotor i HOME", que complementen els materials ja publicats a OMADO: El bebé i el seu context familiar http://diposit.ub.edu/dspace/handle/2445/34096 Aquests materials complementaris inclouen: 1. Aclariments sobre l’aplicació d’alguns ítems de la Taula de Desenvolupament Psicomotor. 2. Pautes per a l’elaboració de l’informe escrit de l’activitat. 3. Rúbrica de l’activitat. A la rúbrica es relacionen les competències que es treballen amb l’activitat i es concreten en termes dels resultats d’aprenentatge que s’espera assolir. S’indiquen les parts de l’informe o altres tasques (exposició oral; seguiment realitzat pel professor) amb les que es relacionen les diverses competències i resultats d’aprenentatge i s’ofereix una descripció dels criteris d’avaluació

    Web de apoyo a la actividad “Observación y valoración del desarrollo infantil y del contexto familiar: Taula de Desenvolupament Psicomotor y HOME".

    Get PDF
    Adreça del web: https://desarrolloenlainfancia.wordpress.com/El document és un web que inclou orientacions i elements de suport per dur a terme una activitat grupal d'observació del desenvolupament infantil i de la familia com a context de desenvolupament. L'activitat implica l'observació i la recollida de dades en context real

    Recursos de suport a l'estudiant en l'assignatura "Desenvolupament en la infància"

    Get PDF
    Podeu consultar la Vuitena trobada de professorat de Ciències de la Salut completa a: http://hdl.handle.net/2445/66524Nuestro objetivo es presentar los recursos de apoyo al estudiante que se aplican en la asignatura “Desarrollo en la infancia”, obligatoria de segundo curso del grado de Psicología, contextualizándolos en el marco de la formación por competencias y de la evaluación continuada y formativa. Los recursos desarrollados para orientar a los estudiantes en su proceso de aprendizaje son: Relacionados con actividades prácticas • Documentos guía • Listas de comprobación (checklists) de tareas • Rúbricas para la elaboración de un informe y para la presentación oral de los trabajos • WebQuest con materiales elaborados por el profesorado • Tutorías individuales y grupales Relacionados con textos obligatorios • Guías de estudio • Cuestionarios de auto-evaluación con feedback En relación con el estudiante y su proceso de aprendizaje, los instrumentos y recursos aplicados contribuyen positivamente a: • Tomar consciencia de cuáles son los objetivos de aprendizaje de la asignatura y de las competencias que se busca desarrollar. • Guiar en la realización de las actividades de aprendizaje y en el trabajo autónomo. • Clarificar los criterios de evaluación. • Orientar a lo largo del proceso de aprendizaje. • Dar elementos para la auto-regulación del aprendizaje. • Contribuir a los buenos resultados académicos. Para guiar la mejora de los recursos de apoyo en el futuro, nos planteamos algunas cuestiones: • ¿Contribuyen de forma eficaz a la auto-regulación del aprendizaje? • ¿Qué aspectos de la guía y apoyo al estudiante pueden vehicularse a través de recursos en la red y cuáles deben ofrecerse de forma presencial? • ¿Cómo establecer la obligatoriedad o no obligatoriedad de algunos de los recursos de apoyo

    Solar UV exposure of children in a summer school in Valencia, Spain

    Full text link
    Ultraviolet (UV) exposure is the major environmental factor involved in the development of skin cancers and occurs mainly during outdoor activities. During summer schools, children receive regular and significant solar ultraviolet erythemal radiation (UVER) while practising outdoor activities. Personal dosimeters (VioSpor) were attached to the shoulders of schoolchildren and used to quantify their exposure to UVER. The study took place in Valencia, Spain, during July 2008, with three age groups (7–8, 9–10 and 11–12 years old) and involved about 15 schoolchildren. The median (25, 75 percentiles) twice-daily UV exposure values for all groups was 5.49 (3.59, 8.00) standard erythemal doses (SEDs), where 1 SED is defined as effective 100 Jm−2 when weighted with the CIE erythemal response function. Exposure ratio (ER) is defined as the ratio between the personal dose on a selected body site and the corresponding ambient dose received on a horizontal plane during the same exposure period. The median (25, 75 percentiles) ER value for all groups in the study was 5.9% (4.1, 8.7).The research reported here was supported by the Spanish Ministry of Education and Science within the research project CGL2007-61813 and the Generalitat Valenciana within the project PROMETEO/2010/064Serrano Jareño, MA.; Cañada Ribera, LJ.; Moreno Esteve, JC. (2012). Solar UV exposure of children in a summer school in Valencia, Spain. International Journal of Biometeorology. 56:371-377. https://doi.org/10.1007/s00484-011-0440-7S37137756Agencia Estatal de Meteorología. http://www.aemet.es/ . Accessed 5 March 2010Armstrong BK (2005) How sun exposure causes skin cancer: an epidemiological perspective, In: Hill D, Elwood JM, English DR (eds) Prevention of skin cancer. Kluwer, Dordrecht, pp 89–116Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63:8–18Biosense Laboratories. http://www.biosense.de/viosp-e.htm . Accessed 5 March 2010Boldeman C, Dal H, Wester U (2004) Swedish pre-school children’s UVR exposure - a comparison between two outdoor environments. Photodermatol Photoimmunol Photomed 20:2–8Fitzpatrick TB, Pathak M, Parrish JA (1974) Protection of human skin against the effects of the sunburn ultraviolet (290–320 nm). In: Pathak MA, Harber LC, Seiji M, Kukita A (eds) Sunlight and man: normal and abnormal photobiologic responses. University of Tokyo Press, TokyoFurusawa Y, Quintern LE, Holtschmidt H, Koepke P, Saito M (1998) Determination of erythema-effective solar radiation in Japan and Germany with a spore monolayer film optimized for the detection of UVA and UVA - results of a field campaign. Appl Microbiol Biotechnol 50:597–603Grant WB, Holick MF (2005) Benefits and requirements of vitamin D for optimal health: a review. Altern Med Rev 10:94–104Guy CY, Diab RD, Martincigh BM (2003) Ultraviolet radiation exposure of children and adolescents in Durban, South Africa. Photochem Photobiol 77:265–270IARC (2000) IARC monographs on the evaluation of carcinogenic risks to humans: solar and ultraviolet radiation 55. IARC, LyonInternational Commission on Illumination (1997) Standard erythema dose, a review. CIE J 125:1–5International Commission on Non-Ionizing Radiation Protection (1995) Global Solar UV Index. ICNIRP-1/95International Commission on Non-Ionizing Radiation Protection (ICNIRP) (2004) Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys 87:171–186International Non-Ionizing Radiation Committee of the International Radiation Protection Association (1985) Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys 49:331–340Kimlin M, Parisi A (2001) Usage of real-time ultraviolet radiation data to modify the daily erythemal exposure of primary schoolchildren. Photodermatol Photoimmunol Photomed 17:130–135McKinlay AF, Diffey BL (1987) A reference action spectrum for ultraviolet induced erythema in human skin. CIE J 6:17–22Moehrle M, Dennenmoser B, Garbe C (2003a) Continuous long-term monitoring of UV radiation in professional mountain guides reveals extremely high exposure. Int J Cancer 103:775–778Moehrle M, Garbe C (2000) Personal UV dosymetry by Bacillus subtilis spore films. Dermatology 200:1–5Moehrle M, Korn M, Garbe C (2003b) Bacillus subtilis spore film dosimeters in personal dosimetry for occupational solar ultraviolet exposure. Int Arch Occup Environ Health 173:575–580Munakata N, Ono M, Watanabe S (1998) Monitoring of solar-UV exposure among schoolchildren in five Japanese cities using spore dosimeter and UV-coloring labels. Jpn J Cancer Res 89:235–245Norval M, Cullen AP, de Gruijl FR, Longstreth J, Takizawa Y, Lucas RM, Noonan FP, van der Leun JC (2007) The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem Photobiol Sci 6:232–251Oliveria SA, Saraiya M, Geller AC, Heneghan MK, Jorgensen C (2006) Sun exposure and risk of melanoma. Arch Dis Child 91:131–138Ono M, Munakata N, Watanabe S (2005) UV exposure of elementary school children in five Japanese cities. Photochem Photobiol 81:437–445Programa meteorología de la Fundación Centro de Estudios Ambientales del Mediterráneo (Generalitat Valenciana). http://www.gva.es/ceamet/vigilancia/radUV/radUV.html . Accessed 15 March 2010Saraiya M, Glanz K, Briss PA, Nichols P, White C, Das D, Smith SJ, Tannor B, Hutchinson AB, Wilson KM, Ghandi N, Lee NC, Rimer B, Coates RC, Kerner JF, Hiatt RA, Buffler P, Rochester P (2004) Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. Am J Prev Med 27:422–466Serrano MA, Cañada J, Moreno JC (2009) Erythemal Ultraviolet exposure in two groups of outdoor workers in Valencia, Spain. Photochem Photobiol 85:1468–1473Serrano MA, Cañada J, Moreno JC (2010) Erythemal ultraviolet exposure of cyclists in Valencia, Spain. Photochem Photobiol 86:716–721Serrano MA, Cañada J, Moreno JC (2011) Solar UV exposure of primary schoolchildren in Valencia, Spain. Photochem Photobiol Sci. doi: 10.1039/C0PP00153HThieden E, Ågren MS, Wulf HC (2000) The wrist is a reliable body site for personal dosimetry of ultraviolet radiation. Photodermatol Photoimmunol Photomed 16:57–61Thieden E, Philipsen PA, Heydenreich J, Wulf HC (2004) UV radiation exposure related to age, sex, occupation, and sun behaviour based on time-stamped personal dosimeter readings. Arch Dermatol 140:197–203World Health Organization (2002) Global Solar UV Index: a practical guide. WHO, Geneva, SwitzerlandWright C, Reeder A (2005) Youth solar ultraviolet radiation exposure, concurrent activities and sun-protective practices: areview. Photochem Photobiol 81:1331–1342Wright CY, Reeder AI, Bodeker GE, Gray A, Cox B (2007) Solar UVR exposure, concurrent activities and sun-protective practices among primary schoolchildren. Photochem Photobiol 83:749–75

    Solar UV exposure in construction workers in Valencia, Spain

    Full text link
    Exposure to ultraviolet radiation (UVR) has long been recognized as the most important environmental risk factor for melanoma and skin cancer. Outdoor workers are among the groups most at risk from exposure to solar UVR in their daily activities. Sensitive spore-film filter-type personal dosimeters (VioSpor) were used to measure the biologically effective UVR received by construction workers in the course of their daily work. The study took place in Valencia, Spain, in July 2010 and involved a group of eight workers for a period of 5 days. The median UV exposure was 6.11 standard erythema dose (SED) per day, with 1 SED defined as effective 100 J/m 2 when weighted with the Commission Internationale de L'Eeclairage erythemal response function. These workers were found to receive a median of 13.9% of total daily ambient ultraviolet erythemal radiation (UVER). Comparison with the occupational UVR exposure limit showed that the subjects had received UVER exposure in excess of occupational guidelines, indicating that protective measures against this risk are highly advisable.Journal of Exposure Science and Environmental Epidemiology advance online publication, 27 June 2012; doi:10.1038/jes.2012.58.We wish to thank the Universitat Politecnica de Valencia building staff for their cooperation in this study. We are also grateful to the State Agency for Meteorology and the Generalitat Valenciana for providing us with access to their meteorological data. We would like to thank the R&D&I Linguistic Assistance Office, Universidad Politecnica de Valencia (Spain) for granting financial support for proofreading this paper. This research was supported by the Spanish Ministry of Education and Science within the research project CGL2010-15931 and the Generalitat Valenciana within project PROMETEO/2010/064.Serrano Jareño, MA.; Cañada Ribera, LJ.; Moreno Esteve, JC. (2013). Solar UV exposure in construction workers in Valencia, Spain. Journal of Exposure Science and Environmental Epidemiology. 23:1-6. https://doi.org/10.1038/jes.2012.58S1623Lucas R., McMichael T., Smith W., and Armstrong B. Solar ultraviolet radiation: global burden of disease from solar ultraviolet radiation. In: Prüss-Ustün A. et al. (Eds.) Environmental Burden of Disease, Series No. 13 World Health Organization, Geneva, 2006.Birch-Johansen F., Jensen A., Mortensen L., Braae A., and Kjær S.K. Trends in the incidence of nonmelanoma skin cancer in Denmark 1978–2007: rapid incidence increase among young Danish women. Int J Cancer 2010: 127: 2190–2198.de Vries E., Tyczynski J.E., and Maxwell Parkin D. Cutaneous malignant melanoma in Europe European network of cancer registries. ENCR CANCER FACT SHEETS No. 4 Intern Agency Res Cancer. November 2003.Fuglede N.B., Brinck-Claussen U., Deltour I., Boesen E.H., Dalton S.O., and Johansen C. Incidence of cutaneous malignant melanoma in Denmark, 1978–2007. Br J Dermatol 2011: 165: 349–353.Garbe C., and Leiter U. Melanoma epidemiology and trends. Clin Dermatol 2009: 27: 3–9.Madan V., Lear J., and Szeimies R.M. Non-melanoma skin cancer. Seminar, www.thelancet.com , 2010: 375.Medhaug I., Olseth J.A., and Reuder J. UV radiation and skin cancer in Norway. J Photochem Photobiol B 2009: 96: 232–241.World Health Organization. World Cancer Report 2008. In: Boyle P., and Levin B. (Eds.) 2008.Cabanes A., Pérez-Gómez B., Aragonés N., Pollán M., and López-Abente G. La situación del cáncer en España, 1975–2006. Instituto de Salud Carlos III, Madrid, 2009.Cáncer en cifras. Centro Nacional de Epidemiología Instituto de Salud Carlos III. Available at http://193.146.50.130/morta/grafs.php# grafs (accessed 15 June 2011).GLOBOCAN. World Health Organization, International Agency for Research on Cancer. Available at http://globocan.iarc.fr/ (accessed 15 June 2011) 2008.CAREX project Available at http://www.esf.org/research-areas/space-sciences/activities/carex-project.html (accessed 15 June 2011).Kauppinen T., Toikkanen J., Pedersen D., Young R., Kogevinas M., and Ahrens W., et al. Occupational exposure to carcinogens in the European Union in 1990–1993. CAREX. International Information System on Occupational Exposure to Carcinogens. Finnish Institute of Occupational Health, Helsinki, 1998.Maqueda J., De la Orden V., Kauppinen T., Toikkanen J., Pedersen D., and Young R., et al. Occupational Exposure to Carcinogens in Spain in 1990–1993: Preliminary Results. Finnish Institute of Occupational Health, Helsinki, 1998.IARC Monographs. Evaluation of carcinogenic risks to humans: solar and ultraviolet radiation 55, Lyon, 2000.Bauer A., Diepgen T.L., and Schmitt J. A systematic review and meta-analysis of the epidemiological literature: is occupational solar ultraviolet irradiation a relevant risk factor for basal cell carcinoma? Br J Dermatol 2011: 165: 612–625.Downs N.J., Schouten P.W., Parisi A.V., and Turner J. Measurements of the upper body ultraviolet exposure to golfers: non-melanoma skin cancer risk, and the potential benefits of exposure to sunlight. Photodermatol Photoimmunol Photomed 2009: 25: 317–324.Hakansson N., Floderus B., Gustavsson P., Feychting M., and Hallin N. Occupational sunlight exposure and cancer incidence among Swedish construction workers. Epidemiology 2001: 12: 552–557.Kenborg L., Jørgensen A.D., Budtz-Jørgensen E., Knudsen L.E., and Hansen J. Occupational exposure to the sun and risk of skin and lip cancer among male wage earners in Denmark: a population-based case–control study. Cancer Causes Control 2010: 21: 1347–1355.Lichte V., Dennenmoser B., Dietz K., Hafner H.M., Schlagenhauff B., Garbe C., and Fischer J. Professional risk for skin cancer development in male mountain guides—a cross-sectional study. J Eur Acad Dermatol Venereol 2010: 24: 797–804.Radespiel-Tröger M., Meyer M., Pfahlberg A., Lausen B., Uter W., and Gefeller O. Outdoor work and skin cancer incidence: a registry-based study in Bavaria. Int Arch Occup Environ Health 2009: 82: 357–363.Aceituno-Madera P., Buendía-Eisman A., Olmo F.J., Jiménez-Moleón J.J., and Serrano-Ortega S. Melanoma, altitude, and UV-B radiation. Actas Dermosifiliogr 2011: 102 (3): 199–205.Boniol M., De Vries E., Coebergh J.W., and Dore J.F. Seasonal variation in the occurrence of cutaneous melanoma in Europe: influence of latitude. An analysis using the EUROCARE group of registries. Eur J Cancer 2005: 41: 126–132.Chang Y., Barrett J.H., and Timothy D. Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls. Int J Epidemiol 2009: 38: 814–830.de Vries E., Boniol M., Dore J.F., and Coebergha J.W.W. Lower incidence rates but thicker melanomas in Eastern Europe before 1992: a comparison with Western Europe. Eur J Cancer 2004: 40: 1045–1052.Downs N., Parisi A., and Schouten P. Basal and squamous cell carcinoma risks for golfers: an assessment of the influence of tee time for latitudes in the Northern and Southern hemispheres. J Photochem Photobiol B 2011: 105: 98–105.Micu E., Juzeniene A., and Moan J. Comparison of the time and latitude trends of melanoma incidence in anorectal region and perianal skin with those of cutaneous malignant melanoma in Norway. J Eur Acad Dermatol Venereol 2011; doi: 10.1111/j.1468-3083.2011.04023.x.Moehrle M., and Garbe C. Does mountaineering increase the incidence of cutaneous melanoma? A hypothesis based on cancer registry data Dermatology. Dermatology 1999: 199 (3): 201–203.Pfeifer M.T., Koepke P., and Reuder J. Effects of altitude and aerosol on UV radiation. J Geophysical Res D: Atmospheres 2006: 111 (1).Gies P., and Wright J. Measured solar ultraviolet radiation exposures of outdoor workers in Queensland in the building and construction industry. Photochem Photobiol 2003: 78 (4): 342–348.Gies P., Watzl R., Javorniczky J., Roy C., Henderson S., Ayton J., and Kingston M. Measurement of the UVR exposures of expeditioners on antarctic resupply voyages. Photochem Photobiol 2009: 85: 1485–1490.Glanz K., Buller D.B., and Saraiya M. Reducing ultraviolet radiation exposure among outdoor workers: state of the evidence and recommendations. Environ Health 2007: 6: 22.Hammond V., Reeder A.I., and Gray A. Patterns of real-time occupational ultraviolet radiation exposure among a sample of outdoor workers in New Zealand. Public Health 2009: 123: 182–187.Milon A., Sottas P.E., Bulliard J.L., and Vernez D. Effective exposure to solar UV in building workers: influence of local and individual factors. J Expo Sci Environ Epidemiol 2007: 17: 58–68.Moehrle M., Dennenmoser B., and Garbe C. Continuous long-term monitoring of UV radiation in Professional mountain guides reveals extremely high exposure. Int J Cancer 2003: 103: 775–778.Schmalwieser A.W., Cabaj A., Schauberger G., Rohn H., Maier B., and Maier H. Facial solar UV exposure of Austrian farmers during occupation. Photochem Photobiol 2010: 86: 1404–1413.Serrano M.A., Cañada J., and Moreno J.C. Erythemal ultraviolet exposure in two groups of outdoor workers in Valencia, Spain. Photochem Photobiol 2009: 85: 1468–1473.Siani A.M., Casale G.R., Sisto R., Colosimo A., Lang C.A., and Kimlin M.G. Occupational exposures to solar ultraviolet radiation of vineyard workers in Tuscany (Italy). Photochem Photobiol 2011: 87: 925–934.Siani A.M., Casale G.R., Díemoz H., Agnesod G., Kimlin M.G., Lang C.A., and Colosimo A. Personal UV exposure in high albedo alpine sites. Atmos Chem Phys 2008: 8: 3749–3760.Thieden E., Collins S.M., Philipsen P.A., Murphy G.M., and Wulf H.C. Ultraviolet exposure patterns of Irish and Danish gardeners during work and leisure. Br J Dermatol 2005: 153: 795–801.de Gruijl F.R. Sufficient vitamin D from casual sun exposure? Photochem Photobiol 2011: 87: 598–601.Webb A.R., Kift R., Berry J.L., and Rhodes L.E. The vitamin D debate: translating controlled experiments into reality for human sun exposure times. Photochem Photobiol 2011: 87: 741–745.Norval M., Cullen A.P., de Gruijl F.R., Longstreth J., Takizawa Y., Lucas R.M., Noonan F.P., and Van der Leun J.C. The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem Photobiol Sci 2007: 6: 232–251.Kampman M.T., and Steffense L.H. The role of vitamin D in multiple sclerosis. J Photochem Photobiol B 2010: 101: 137–141.Van Amerongen B.M., Dijkstra C.D., Lips P., and Polman C.H. Multiple sclerosis and vitamin D: an update. Eur J Clin Nutr 2004: 58: 1095–1109.Zittermann A., and Gummert J.F. Sun, vitamin D, and cardiovascular disease. J Photochem Photobiol B 2010: 101: 124–129.Gilbert R., Metcalfe C., Oliver S.E., Whiteman D.C., Bain C., and Ness A., et al. Life course sun exposure and risk of prostate cancer: population-based nested case-control study and metaanalysis. Int J Cancer 2009: 125: 1414–1423.Grant W.B. Relation between prediagnostic serum 25-hydroxyvitamin D level and incidence of breast, colorectal, and other cancers. J Photochem Photobiol B 2010: 101: 130–136.Grant W.B., and Holick M.F. Benefits and requirements of vitamin D for optimal health: a review. Altern Med Rev 2005: 10 (2): 94–104.John E.M., Koo J., and Schwartz G.G. Sun exposure and prostate cancer risk: evidence for a protective effect of early-life exposure. Cancer Epidemiol Biomarkers Prev 2007: 16: 1283–1286.Humble M.B. Vitamin D, light and mental health. J Photochem Photobiol B 2010: 101: 142–149.EUROMELANOMA. Available at http://www.euromelanoma.org (accessed 5 April 2011).Biosense Laboratories Available at www.biosense.de/home-e.htm (accessed 11 April 2011).Moehrle M., and Garbe C. Personal UV dosymetry by Bacillus subtilis Spore Films. Dermatology 2000: 200: 1–5.O’Riordan D.L., Glanz K., Gies P., and Elliott T. A pilot study of the validity of self-reported ultraviolet radiation exposure and sun protection practices among lifeguards, parents and children. Photochem Photobiol 2008: 84 (3): 774–778.Furusawa Y., Quintern L.E., Holtschmidt H., Koepke P., and Saito M. Determination of erythema-effective solar radiation in Japan and Germany with a spore monolayer film optimized for the detection of UVA and UVA—results of a field campaign. Appl Microbiol Biotechnol 1998: 50: 597–603.Munakata N., Kazadzis S., Bais A.F., Hieda K., Ronto G., Rettberg P., and Horneck G. Comparisons of spore dosimetry and spectral photometry of solar-UV radiation at four sites in Japan and Europe. Photochemistry and Photobiology 2000: 72 (6): 739–745.McKinlay A.F., and Diffey B.L. A reference action spectrum for ultraviolet induced erythema in human skin. CIE Journal 1987: 6: 17–22.CIE. International commission on illumination, standard erythema dose, a review. CIE Journal 1997: 125: 1–5. Vienna.Quintern L.E., Furusawa Y., Fukutsu K., and Holtschimdt H. Characterization and application of UV detector spore-films: the sensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin. J Photochem Photobiol B 1997: 37: 158–166.Seckmeyer G., Mayer B., and Bernhard G. The 1997 Status of Solar UV Spectroradiometry in Germany: results from the National Intercomparison of UV Spectroradiometers, with contributions from Albold A., Baum W., Dehne K., Feister U.,Gericke K., Grewe R., Gross C., Sandmann H., Schreiber J., Seidlitz H.K., Steinmetz M., Thiel S., Wallasch M. and Weller M. Garmisch-Partenkirchen, Germany, Fraunhofer Institute for Atmospheric Environmental Research 1998. 55/98, ISBN: 3-8265-3695-9.Programa meteorología de la Fundación Centro de Estudios Ambientales del Mediterráneo (Generalitat Valenciana). http://www.gva.es/ceamet/vigilancia/radUV/radUV.html . (accessed 2 March 2011).Hülsen G., and Gröbner J. Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted irradiance. Appl Opt 2007: 46: 5877–5886.Vilaplana J.M., Cachorro V.E., Sorribas M., Luccini E., de Frutos A.M., and Berjón A., et al. Modified calibration procedures for a Yankee Environmental System UVB-1 biometer based on spectral measurements with a Brewer spectrophotometer. J Photochem Photobiol 2006: 82: 508–514.Cañada J., Esteve A.R., Marin M.J., Utrillas M.P., Tena F., and Martinez-Lozano J.A. Study of erythemal, UV(A+B) and global solar radiation in Valencia (Spain). Intern J Climatol 2008: 28: 693–702.Tena F., Martinez-Lozano J.A., Utrillas M.P., Marin M.J., Esteve A.R., and Cañada J. The erythemal clearness index for Valencia, Spain. Intern J Climatol 2009: 29: 147–155.IRPA (International Radiation Protection Association). Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Physics 1985: 49 (2): 331–340.ICNIRP (International Commission on Non-Ionizing Radiation Protection). Protection of workers against ultraviolet radiation. Health Physics 2010: 99 (1): 66–87.ICNIRP (International Commission on Non-Ionizing Radiation Protection). Protecting workers from ultraviolet radiation. In: Vecchia P., Hietanen M., Stuck B.E., van Deventer E., Niu S. ICNIRP14/2007. ICNIRP, Oberschleissheim, Germany.ACGIH, TLVs and BEI. Threshold limit values for chemical substances and physical agents, biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati, 1999, 154–158.Agencia Estatal de Meteorología (AEMET) Available at http://www.aemet.es/ (accessed 7 March 2011).NASA. Total Ozone Mapping Spectrometer. Available at http://jwocky.gsfc.nasa.gov/ (accessed 7 March 2011).ICNIRP (International Commission on Non-Ionizing Radiation Protection). Global Solar UV Index. ICNIRP-1/95, 1995.World Health Organization. Global Solar UV Index: A Practical Guide. WHO, Geneva, Switzerland, 2002

    Draft genome sequence of Stenotrophomonas maltophilia strain M30, isolated from a chronic pressure ulcer in an elderly patient

    Get PDF
    Stenotrophomonas maltophilia is an emerging opportunistic pathogen with an increasing prevalence of multidrug-resistant strains. Here, we report the draft genome sequence of S. maltophilia strain M30, isolated from a pressure ulcer in an elderly patient
    corecore