2,781 research outputs found

    Role of fibre in broiler diets - Firend or foe?

    Full text link
    The fibrous fraction of the feeds encompasses a group of heterogeneous compounds differing in chemical composition and physical properties (Graham and Aman, 1991, Bach Knudsen, 2001). Dietary fiber is the most used term to define the fiber fraction of ingredients and feeds, and includes cell walls, stored non-starch polysaccharides (NSP), and lignin (Bach Knudsen, 2001). Based on their physico-chemical properties, DF can be divided into soluble and insoluble fractions with distinct effects on digestive physiology and animal metabolism. Consequently, the benefits of fiber inclusion in poultry diets will vary depending on factors such as characteristics of the fiber source, type of bird, and digestive health status

    Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest

    Get PDF
    Natural soil water repellency is a property that has already been observed in forest soils and is characterized by its patchy distribution. There are many factors involved in its development. In this work, we have studied a large number of chemical and biological factors under the influence of different plant species (. Pinus halepensis, Quercus rotundifolia, Cistus albidus and Rosmarinus officinalis) to learn which has the greatest responsibility for its presence and persistence in the top-soil layer. We observed strong and significant correlations between ergosterol, glomalin related soil protein (GRSP), extractable lipids, soil organic matter (SOM) content and water repellency (WR). Our results suggested lipid fraction as the principal factor. Moreover, apart from Pinus, fungal biomass seems to be also related to the SOM content. Soil WR found under Pinus appears to be the most influenced by fungi. Quality of SOM, to be precise, lipid fraction could be responsible for WR and its relationship with fungal activity.Ministerio de Economía y Competitividad CGL2010- 21670-C02-01, CGL2012-38655-C04-0

    Compilation of parameterized seismogenic sources in Iberia for the SHARE European-scale seismic source model.

    Get PDF
    Abstract: SHARE (Seismic Hazard Harmonization in Europe) is an EC-funded project (FP7) that aims to evaluate European seismic hazards using an integrated, standardized approach. In the context of SHARE, we are compiling a fully-parameterized active fault database for Iberia and the nearby offshore region. The principal goal of this initiative is for fault sources in the Iberian region to be represented in SHARE and incorporated into the source model that will be used to produce seismic hazard maps at the European scale. The SHARE project relies heavily on input from many regional experts throughout the Euro-Mediterranean region. At the SHARE regional meeting for Iberia, the 2010 Working Group on Iberian Seismogenic Sources (WGISS) was established; these researchers are contributing to this large effort by providing their data to the Iberian regional integrators in a standardized format. The development of the SHARE Iberian active fault database is occurring in parallel with IBERFAULT, another ongoing effort to compile a database of active faults in the Iberian region. The SHARE Iberian active fault database synthesizes a wide range of geological and geophysical observations on active seismogenic sources, and incorporates existing compilations (e.g., Cabral, 1995; Silva et al., 2008), original data contributed directly from researchers, data compiled from the literature, parameters estimated using empirical and analytical relationships, and, where necessary, parameters derived using expert judgment. The Iberian seismogenic source model derived for SHARE will be the first regional-scale source model for Iberia that includes fault data and follows an internationally standardized approach (Basili et al., 2008; 2009). This model can be used in both seismic hazard and risk analyses and will be appropriate for use in Iberian- and European-scale assessments

    Dietary, Cultural, and Pathogens-Related Selective Pressures Shaped Differential Adaptive Evolution among Native Mexican Populations

    Get PDF
    Native American genetic ancestry has been remarkably implicated with increased risk of diverse health issues in several Mexican populations, especially in relation to the dramatic changes in environmental, dietary, and cultural settings they have recently undergone. In particular, the effects of these ecological transitions and Westernization of lifestyles have been investigated so far predominantly on Mestizo individuals. Nevertheless, indigenous groups, rather than admixed Mexicans, have plausibly retained the highest proportions of genetic components shaped by natural selection in response to the ancient milieu experienced by Mexican ancestors during their pre-Columbian evolutionary history. These formerly adaptive variants have the potential to represent the genetic determinants of some biological traits that are peculiar to Mexican people, as well as a reservoir of loci with possible biomedical relevance. To test such a hypothesis, we used genome-wide genotype data to infer the unique adaptive evolution of Native Mexican groups selected as reasonable descendants of the main pre-Columbian Mexican civilizations. A combination of haplotype-based and gene-network analyses enabled us to detect genomic signatures ascribable to polygenic adaptive traits plausibly evolved by the main genetic clusters of Mexican indigenous populations to cope with local environmental and/or cultural conditions. Some of these adaptations were found to play a role in modulating the susceptibility/resistance of these groups to certain pathological conditions, thus providing new evidence that diverse selective pressures have contributed to shape the current biological and disease-risk patterns of present-day Native and Mestizo Mexican populations

    Cryo-EM and single-particle analysis with Scipion

    Full text link
    Cryo-electron microscopy has become one of the most important tools in biological research to reveal the structural information of macromolecules at near-atomic resolution. In single-particle analysis, the vitrified sample is imaged by an electron beam and the detectors at the end of the microscope column produce movies of that sample. These movies contain thousands of images of identical particles in random orientations. The data need to go through an image processing workflow with multiple steps to obtain the final 3D reconstructed volume. The goal of the image processing workflow is to identify the acquisition parameters to be able to reconstruct the specimen under study. Scipion provides all the tools to create this workflow using several image processing packages in an integrative framework, also allowing the traceability of the results. In this article the whole image processing workflow in Scipion is presented and discussed with data coming from a real test case, giving all the details necessary to go from the movies obtained by the microscope to a high resolution final 3D reconstruction. Also, the power of using consensus tools that allow combining methods, and confirming results along every step of the workflow, improving the accuracy of the obtained results, is discussed

    A comparison of three load-velocity based methods to estimate maximum overhead press performance in weightlifters

    Get PDF
    This study aimed to evaluate whether lifting velocity can be used to estimate the overhead press one repetition maximum (1RM) and to explore the differences in the accuracy of the 1RM between three velocity-based methods. Twenty-seven weightlifters (16 men and 11 women) participated. The first session was used to test the overhead press 1RM. The second session consisted of an incremental loading test during the overhead press. The mean velocity was registered using a transducer attached to the barbell. A 1-way repeated-measures analysis of variance (ANOVA) with Bonferroni post hoc corrections was applied to the absolute differences between the actual and predicted 1RMs. Raw differences with 95% limits of agreement and ordinary least-products regressions were used to test the concurrent validity of the 1RM prediction methods with respect to the actual 1RM. The ANOVA did not reveal significant differences for the absolute differences respect to the actual 1RM between the three 1RM prediction methods ( F = 3.2, p = .073). The absolute errors were moderate for the Multiple-Point (6.1 ± 3.7%), Two-Point45−75 (8.6 ± 6.2%), and Two-Point45−90 methods (5.7 ± 4.0%). The validity analysis showed that all the 1RM prediction methods underestimated the actual 1RM (1.0–2.2 kg), but ordinary least-products regressions failed to show fixed or proportional bias. These results suggest that the Multiple-Point and Two-Point45−90 velocity-based methods might be viable tools to predict the overhead press 1RM in weightlifters, but practitioners are encouraged to use the direct 1RM for a more accurate prescription of the training loads

    Alpine bogs of southern Spain show human-induced environmental change superimposed on long-term natural variations

    Get PDF
    Recent studies have proved that high elevation environments, especially remote wetlands, are exceptional ecological sensors of global change. For example, European glaciers have retreated during the 20th century while the Sierra Nevada National Park in southern Spain witnessed the first complete disappearance of modern glaciers in Europe. Given that the effects of climatic fluctuations on local ecosystems are complex in these sensitive alpine areas, it is crucial to identify their long-term natural trends, ecological thresholds, and responses to human impact. In this study, the geochemical records from two adjacent alpine bogs in the protected Sierra Nevada National Park reveal different sensitivities and long-term environmental responses, despite similar natural forcings, such as solar radiation and the North Atlantic Oscillation, during the late Holocene. After the Industrial Revolution both bogs registered an independent, abrupt and enhanced response to the anthropogenic forcing, at the same time that the last glaciers disappeared. The different response recorded at each site suggests that the National Park and land managers of similar regions need to consider landscape and environmental evolution in addition to changing climate to fully understand implications of climate and human influence.This study was supported by the project P11-RNM 7332 of the “Junta de Andalucía”, the projects CGL2013-47038-R and CGL2015-67130-C2-1-R of the “Ministerio de Economía y Competitividad of Spain and Fondo Europeo de Desarrollo Regional FEDER” and the research group RNM0190 and RNM309 (Junta de Andalucía). A.G.-A. was also supported by a Marie Curie Intra-European Fellowship of the 7th Framework Programme for Research, Technological Development and Demonstration of the European Commission (NAOSIPUK. Grant Number: PIEF-GA-2012-623027) and by a Ramón y Cajal Fellowship RYC-2015-18966 of the Spanish Government (Ministerio de Economía y Competividad). J.L.T. was also supported by a Small Research Grant by the Carnegie Trust for the Universities of Scotland and hosted the NAOSIPUK project (PIEF-GA-2012-623027). M. J. R-R acknowledges the PhD funding provided by Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (P11-RNM 7332)

    Fullerene-based molecular nanobridges: A first-principles study

    Full text link
    Building upon traditional quantum chemistry calculations, we have implemented an {\em ab-initio} method to study the electrical transport in nanocontacts. We illustrate our technique calculating the conductance of C60_{60} molecules connected in various ways to Al electrodes characterized at the atomic level. Central to a correct estimate of the electrical current is a precise knowledge of the local charge transfer between molecule and metal which, in turn, guarantees the correct positioning of the Fermi level with respect to the molecular orbitals. Contrary to our expectations, ballistic transport seems to occur in this system.Comment: 4 pages in two-column forma

    Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept

    Full text link
    We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactorsand the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40\,cm long gas cell placed in the beam path of the Aries 40\,m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS,CS, SO2 (<1E-03 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments.Comment: Accepted for publication in Astronomy and Astrophysics in September 21, 2017. 16 pages, 18 figure
    corecore