33,172 research outputs found

    Quantum Entanglement in (d−1)(d-1)-Spherium

    Get PDF
    There are very few systems of interacting particles (with continuous variables) for which the entanglement of the concomitant eigenfunctions can be computed in an exact, analytical way. Here we present analytical calculations of the amount of entanglement exhibited by ss-states of \emph{spherium}. This is a system of two particles (electrons) interacting via a Coulomb potential and confined to a (d−1)(d-1)-sphere (that is, to the surface of a dd-dimensional ball). We investigate the dependence of entanglement on the radius RR of the system, on the spatial dimensionality dd, and on energy. We find that entanglement increases monotonically with RR, decreases with dd, and also tends to increase with the energy of the eigenstates. These trends are discussed and compared with those observed in other two-electron atomic-like models where entanglement has been investigated.Comment: 14 pages, 6 figures. J. Phys. A (2015). Accepte

    Information theory of quantum systems with some hydrogenic applications

    Full text link
    The information-theoretic representation of quantum systems, which complements the familiar energy description of the density-functional and wave-function-based theories, is here discussed. According to it, the internal disorder of the quantum-mechanical non-relativistic systems can be quantified by various single (Fisher information, Shannon entropy) and composite (e.g. Cramer-Rao, LMC shape and Fisher-Shannon complexity) functionals of the Schr\"odinger probability density. First, we examine these concepts and its application to quantum systems with central potentials. Then, we calculate these measures for hydrogenic systems, emphasizing their predictive power for various physical phenomena. Finally, some recent open problems are pointed out.Comment: 9 pages, 3 figure

    Phase behaviour and particle-size cutoff effects in polydisperse fluids

    Full text link
    We report a joint simulation and theoretical study of the liquid-vapor phase behaviour of a fluid in which polydispersity in the particle size couples to the strength of the interparticle interactions. Attention is focussed on the case in which the particles diameters are distributed according to a fixed Schulz form with degree of polydispersity ÎŽ=14\delta=14%. The coexistence properties of this model are studied using grand canonical ensemble Monte Carlo simulations and moment free energy calculations. We obtain the cloud and shadow curves as well as the daughter phase density distributions and fractional volumes along selected isothermal dilution lines. In contrast to the case of size-{\em independent} interaction strengths (N.B. Wilding, M. Fasolo and P. Sollich, J. Chem. Phys. {\bf 121}, 6887 (2004)), the cloud and shadow curves are found to be well separated, with the critical point lying significantly below the cloud curve maximum. For densities below the critical value, we observe that the phase behaviour is highly sensitive to the choice of upper cutoff on the particle size distribution. We elucidate the origins of this effect in terms of extremely pronounced fractionation effects and discuss the likely appearance of new phases in the limit of very large values of the cutoff.Comment: 12 pages, 15 figure

    Dynamical organization towards consensus in the Axelrod model on complex networks

    Full text link
    We analyze the dynamics toward cultural consensus in the Axelrod model on scale-free networks. By looking at the microscopic dynamics of the model, we are able to show how culture traits spread across different cultural features. We compare the diffusion at the level of cultural features to the growth of cultural consensus at the global level, finding important differences between these two processes. In particular, we show that even when most of the cultural features have reached macroscopic consensus, there are still no signals of globalization. Finally, we analyze the topology of consensus clusters both for global culture and at the feature level of representation.Comment: 8 pages, 7 figures. Final version published in Physical Review

    Nuclear shape dependence of Gamow-Teller distributions in neutron-deficient Pb isotopes

    Get PDF
    We study Gamow-Teller strength distributions in the neutron-deficient even isotopes (184-194)Pb in a search for signatures of deformation. The microscopic formalism used is based on a deformed quasiparticle random phase approximation (QRPA) approach, which involves a self-consistent quasiparticle deformed Skyrme Hartree-Fock (HF) basis and residual spin-isospin forces in both the particle-hole and particle-particle channels. By analyzing the sensitivity of the Gamow-Teller strength distributions to the various ingredients in the formalism, we conclude that the beta-decay of these isotopes could be a useful tool to look for fingerprints of nuclear deformation.Comment: 20 pages, 11 figures. To be published in Physical Review

    Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors

    Get PDF
    We have measured the transition process from the high to low resistivity states, i.e., the reset process of resistive switching based memristors based on Ni/HfO2/Si-n+ structures, and have also developed an analytical model for their electrical characteristics. When the characteristic curves are plotted in the current-voltage (I-V) domain a high variability is observed. In spite of that, when the same curves are plotted in the charge-flux domain (Q-phi), they can be described by a simple model containing only three parameters: the charge (Qrst) and the flux (rst) at the reset point, and an exponent, n, relating the charge and the flux before the reset transition. The three parameters can be easily extracted from the Q-phi plots. There is a strong correlation between these three parameters, the origin of which is still under study

    Trust in public relations in the age of mistrusted media: A European perspective

    Get PDF
    One of the core problems of misinformation and post-trust societies is, indeed, trust in communications. The undermining of the credibility of media as the backbone of democratic societies is becoming a serious problem that affects democracy, business and all kinds of public institutions and organizations in society(ies). This paper explores perceptions of trust in key stakeholders involved in communication on behalf of organizations. Findings are considered at the professional (macro), departmental (meso) and individual (micro) level as well as considering the trusted role of non-specialist communicators for organizations including internal and external spokespeople. Data were collected from an online survey of 2883 respondents from 46 countries across Europe. Key findings were at the macro level that: antagonism between management communication professionals and journalists remains. The lowest trust in the profession is felt to be by the general public. At the meso level, top executives are perceived to trust the department the most followed by journalists in second place. External experts such as professors and consultants are perceived to be the most trusted by the general public. Finally, at the micro level individuals are more trusted than organizations or departments and the communication profession more widely

    A model for cascading failures in complex networks

    Full text link
    Large but rare cascades triggered by small initial shocks are present in most of the infrastructure networks. Here we present a simple model for cascading failures based on the dynamical redistribution of the flow on the network. We show that the breakdown of a single node is sufficient to collapse the efficiency of the entire system if the node is among the ones with largest load. This is particularly important for real-world networks with an highly hetereogeneous distribution of loads as the Internet and electrical power grids.Comment: 4 pages, 4 figure
    • 

    corecore