144 research outputs found

    Markov Chains and Multiple Orthogonality

    Full text link
    In this work we survey on connections of Markov chains and the theory of multiple orthogonality. Here we mainly concentrate on give a procedure to generate stochastic tetra diagonal Hessenberg matrices, coming from some specific families of multiple orthogonal, such as the ones of Jacobi--Pi\~neiro and Hypergeometric Lima--Loureiro. We show that associated with a positive tetra diagonal nonnegative bounded Hessenberg matrix we can construct two stochastic tetra diagonal ones. These two stochastic tridiagonal nonnegative Hessenberg matrices are shown to be, enlightened by the Poincar\'e theorem, limit transpose of each other

    Mice with a Heterozygous Lrp6 Deletion Have Impaired Fracture Healing

    Get PDF
    Bone fracture non-unions, the failure of a fracture to heal, occur in 10%–20% of fractures and are a costly and debilitating clinical problem. The Wnt/β-catenin pathway is critical in bone development and fracture healing. Polymorphisms of linking low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt-binding receptor, have been associated with decreased bone mineral density and fragility fractures, although this remains controversial. Mice with a homozygous deletion of Lrp6 have severe skeletal abnormalities and are not viable, whereas mice with a heterozygous deletion have a combinatory effect with Lrp5 to decrease bone mineral density. As fracture healing closely models embryonic skeletal development, we investigated the process of fracture healing in mice heterozygous for Lrp6 (Lrp6+/−) and hypothesized that the heterozygous deletion of Lrp6 would impair fracture healing. Mid-diaphyseal femur fractures were induced in Lrp6+/− mice and wild-type controls (Lrp6+/+). Fractures were analyzed using micro-computed tomography (μCT) scans, biomechanical testing, and histological analysis. Lrp6+/− mice had significantly decreased stiffness and strength at 28 days post fracture (PF) and significantly decreased BV/TV, total density, immature bone density, and mature area within the callus on day-14 and -21 PF; they had significantly increased empty callus area at days 14 and 21 PF. Our results demonstrate that the heterozygous deletion of Lrp6 impairs fracture healing, which suggests that Lrp6 has a role in fracture healing

    Thermal treatment of magnesium particles in polylactic acid polymer films elicits the expression of osteogenic differentiation markers and lipidome profile remodeling in human adipose stem cells

    Get PDF
    The efficacy of polylactic acid (PLA)/Magnesium (Mg)-based materials for driving stem cells toward bone tissue engineering applications requires specific Mg surface properties to modulate the interface of stem cells with the film. Here, we have developed novel PLA/Mg-based composites and explored their osteogenic differentiation potential on human adipose stem cells (hASCs). Mg-particles/polymer interface was improved by two treatments: heating in oxidative atmosphere (TT) and surface modification with a compatibilizer (PEI). Different contents of Mg particles were dispersed in PLA and composite surface and bulk properties, protein adsorption, stem cell-PLA/Mg interactions, osteogenic markers expressions, and lipids composition profile were evaluated. Mg particles were uniformly distributed on the surface and in the bulk PLA polymer. Improved and modulated particle-polymer adhesion was observed in Mg particle-treated composites. After 21 days in canonical growth culture conditions, hASCs on PLA/MgTT displayed the highest expression of the general osteogenic markers, RUNX2, SSP1, and BGLAP genes, Alkaline Phosphatase, type I Collagen, Osteopontin, and Calcium deposits. Moreover, by LC/MS QTOF mass-spectrophotometry lipidomic analysis, we found in PLA/MgTT-cells, for the first time, a remodeling of the lipid classes composition associated with the osteogenic differentiation. We ascribed these results to MgTT characteristics, which improve Mg availability and composite osteoinductive performance.This work has been carried out within the M-ERANET Programme: Project POLYMAGIC. A. Ferrandez-Montero thanks Project ADITIMAT-CM: Fabricación aditiva: del material a la aplicación. S2018/NMT-4411. M. Lieblich thanks Project PID2019-104351GB-C21 financed by MCIN/AEI/10.13039/501100011033

    A Mitocentric View of the Main Bacterial and Parasitic Infectious Diseases in the Pediatric Population

    Get PDF
    Infectious diseases occur worldwide with great frequency in both adults and children. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins to the complexes of the electron transport chain, (ii) mitochondrial genome (depletion, deletions, and point mutations) and mitochondrial dynamics (fusion and fission), (iii) membrane potential, (iv) apoptotic regulation, (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with great impact on children’s quality of life, even resulting in death. As such, bacterial agents are frequently associated with loss of mitochondrial membrane potential and cytochrome c release, ultimately leading to mitochondrial apoptosis by activation of caspases-3 and -9. Using Rayyan QCRI software for systematic reviews, we explore the association between mitochondrial alterations and pediatric infections including (i) bacterial: M. tuberculosis, E. cloacae, P. mirabilis, E. coli, S. enterica, S. aureus, S. pneumoniae, N. meningitidis and (ii) parasitic: P. falciparum. We analyze how these pediatric infections and their treatments may lead to mitochondrial deterioration in this especially vulnerable population, with the intention of improving both the understanding of these diseases and their management in clinical practice

    Smad4-expression is decreased in breast cancer tissues: a retrospective study

    Get PDF
    BACKGROUND: Although transforming growth factor β (TGF-β) typically inhibits proliferation of epithelial cells, consistent with a tumor suppressor activity, it paradoxically also exhibits pro-metastatic activity in the later stages of carcinogenesis. Since tumors often display altered TGF-β signaling, particularly involving the Smad-pathway, we investigated the role of Smad4-expression in breast cancer. METHODS: Smad4 expression was investigated by immunohistochemistry in formalin-fixed, paraffin-embedded tissue from 197 samples of primary breast cancer obtained between 1986 and 1998. The prognostic value of Smad4-expression was analyzed. RESULTS: Smad4 expression was found to be reduced in lobular and ductal breast carcinoma as compared to surrounding uninvolved lobular and ductal breast epithelia (p < 0.001, n = 50). Smad4-expression correlated positively with expression of TGF-β-receptor I (p < 0.001, n = 197) and TGF-β-receptor II (p < 0.001, n = 197), but showed no significant correlation with tumor size, metastases, nodal status, histological grade, histological type, or estrogen receptor expression. While not achieving statistical significance, there was a trend towards longer survival times in patients with Smad4 negative tumors. CONCLUSION: According to the suggested role of Smad4 as a tumor suppressor we observed that expression of Smad4 is lower in human breast cancer than in surrounding breast epithelium. However, we also observed a trend towards longer survival times in Smad4-negative patients, indicating the complex role of TGF-β signaling in tumor progression

    A longitudinal study of gene expression in first-episode schizophrenia; exploring relapse mechanisms by co-expression analysis in peripheral blood

    Get PDF
    Little is known about the pathophysiological mechanisms of relapse in first-episode schizophrenia, which limits the study of potential biomarkers. To explore relapse mechanisms and identify potential biomarkers for relapse prediction, we analyzed gene expression in peripheral blood in a cohort of first-episode schizophrenia patients with less than 5 years of evolution who had been evaluated over a 3-year follow-up period. A total of 91 participants of the 2EPs project formed the sample for baseline gene expression analysis. Of these, 67 provided biological samples at follow-up (36 after 3 years and 31 at relapse). Gene expression was assessed using the Clariom S Human Array. Weighted gene co-expression network analysis was applied to identify modules of co-expressed genes and to analyze their preservation after 3 years of follow-up or at relapse. Among the 25 modules identified, one module was semi-conserved at relapse (DarkTurquoise) and was enriched with risk genes for schizophrenia, showing a dysregulation of the TCF4 gene network in the module. Two modules were semi-conserved both at relapse and after 3 years of follow-up (DarkRed and DarkGrey) and were found to be biologically associated with protein modification and protein location processes. Higher expression of DarkRed genes was associated with higher risk of suffering a relapse and early appearance of relapse (p = 0.045). Our findings suggest that a dysregulation of the TCF4 network could be an important step in the biological process that leads to relapse and suggest that genes related to the ubiquitin proteosome system could be potential biomarkers of relapse. © 2021, The Author(s)

    Interim 2017/18 influenza seasonal vaccine effectiveness: Combined results from five European studies

    Get PDF
    Between September 2017 and February 2018, influenza A(H1N1)pdm09, A(H3N2) and B viruses (mainly B/Yamagata, not included in 2017/18 trivalent vaccines) co-circulated in Europe. Interim results from five European studies indicate that, in all age groups, 2017/18 influenza vaccine effectiveness was 25 to 52% against any influenza, 55 to 68% against influenza A(H1N1)pdm09, -42 to 7% against influenza A(H3N2) and 36 to 54% against influenza B. 2017/18 influenza vaccine should be promoted where influenza still circulates
    • …
    corecore