4,357 research outputs found

    Electrospun amplified fiber optics

    Full text link
    A lot of research is focused on all-optical signal processing, aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for an efficient signal transmission. However, the complex fabrication methods, involving high-temperature processes performed in highly pure environment, slow down the fabrication and make amplified components expensive with respect to an ideal, high-throughput and room temperature production. Here, we report on near infrared polymer fiber amplifiers, working over a band of about 20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and show amplified spontaneous emission with good gain coefficients as well as low optical losses (a few cm^-1). The amplification process is favoured by the high fiber quality and low self-absorption. The found performance metrics promise to be suitable for short-distance operation, and the large variety of commercially-available doping dyes might allow for effective multi-wavelength operation by electrospun amplified fiber optics.Comment: 27 pages, 8 figure

    Evidence of a resonant structure in the e+e−→π+D0D∗−e^+e^-\to \pi^+D^0D^{*-} cross section between 4.05 and 4.60 GeV

    Get PDF
    The cross section of the process e+e−→π+D0D∗−e^+e^-\to \pi^+D^0D^{*-} for center-of-mass energies from 4.05 to 4.60~GeV is measured precisely using data samples collected with the BESIII detector operating at the BEPCII storage ring. Two enhancements are clearly visible in the cross section around 4.23 and 4.40~GeV. Using several models to describe the dressed cross section yields stable parameters for the first enhancement, which has a mass of 4228.6 \pm 4.1 \pm 6.3 \un{MeV}/c^2 and a width of 77.0 \pm 6.8 \pm 6.3 \un{MeV}, where the first uncertainties are statistical and the second ones are systematic. Our resonant mass is consistent with previous observations of the Y(4220)Y(4220) state and the theoretical prediction of a DDˉ1(2420)D\bar{D}_1(2420) molecule. This result is the first observation of Y(4220)Y(4220) associated with an open-charm final state. Fits with three resonance functions with additional Y(4260)Y(4260), Y(4320)Y(4320), Y(4360)Y(4360), ψ(4415)\psi(4415), or a new resonance, do not show significant contributions from either of these resonances. The second enhancement is not from a single known resonance. It could contain contributions from ψ(4415)\psi(4415) and other resonances, and a detailed amplitude analysis is required to better understand this enhancement

    Study of J/ψJ/\psi and ψ(3686)→Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states ÎŁ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to ÎŁ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)→Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/Ïˆâ†’ÎŁ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=−0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)→ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and ÎŁ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22

    Observation of the WW-Annihilation Decay Ds+→ωπ+D^{+}_{s} \rightarrow \omega \pi^{+} and Evidence for Ds+→ωK+D^{+}_{s} \rightarrow \omega K^{+}

    Get PDF
    We report on the observation of the WW-annihilation decay Ds+→ωπ+D^{+}_{s} \rightarrow \omega \pi^{+} and the evidence for Ds+→ωK+D_{s}^{+} \rightarrow \omega K^{+} with a data sample corresponding to an integrated luminosity of 3.19 fb−1^{-1} collected with the BESIII detector at the center-of-mass energy s=4.178\sqrt{s} = 4.178 GeV. We obtain the branching fractions B(Ds+→ωπ+)=(1.77±0.32stat.±0.11sys.)×10−3\mathcal{B}(D^{+}_{s} \rightarrow \omega \pi^{+}) = (1.77\pm0.32_{{\rm stat.}}\pm0.11_{{\rm sys.}}) \times 10^{-3} and B(Ds+→ωK+)=(0.87±0.24stat.±0.07sys.)×10−3\mathcal{B}(D^{+}_{s} \rightarrow \omega K^{+}) = (0.87\pm0.24_{{\rm stat.}}\pm0.07_{{\rm sys.}}) \times 10^{-3}, respectively

    An addressable quantum dot qubit with fault-tolerant control fidelity

    Get PDF
    Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy (N-V) centers in diamond and phosphorus atoms in silicon, including the demonstration of long coherence times made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has orders of magnitude improved coherence times compared with other quantum dot qubits, with T_2* = 120 mus and T_2 = 28 ms. By gate-voltage tuning of the electron g*-factor, we can Stark shift the electron spin resonance (ESR) frequency by more than 3000 times the 2.4 kHz ESR linewidth, providing a direct path to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+Îł decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201
    • 

    corecore