Exciting progress towards spin-based quantum computing has recently been made
with qubits realized using nitrogen-vacancy (N-V) centers in diamond and
phosphorus atoms in silicon, including the demonstration of long coherence
times made possible by the presence of spin-free isotopes of carbon and
silicon. However, despite promising single-atom nanotechnologies, there remain
substantial challenges in coupling such qubits and addressing them
individually. Conversely, lithographically defined quantum dots have an
exchange coupling that can be precisely engineered, but strong coupling to
noise has severely limited their dephasing times and control fidelities. Here
we combine the best aspects of both spin qubit schemes and demonstrate a
gate-addressable quantum dot qubit in isotopically engineered silicon with a
control fidelity of 99.6%, obtained via Clifford based randomized benchmarking
and consistent with that required for fault-tolerant quantum computing. This
qubit has orders of magnitude improved coherence times compared with other
quantum dot qubits, with T_2* = 120 mus and T_2 = 28 ms. By gate-voltage tuning
of the electron g*-factor, we can Stark shift the electron spin resonance (ESR)
frequency by more than 3000 times the 2.4 kHz ESR linewidth, providing a direct
path to large-scale arrays of addressable high-fidelity qubits that are
compatible with existing manufacturing technologies