236 research outputs found

    Sex differences in condition dependence of natal dispersal in a large herbivore: dispersal propensity and distance are decoupled

    Get PDF
    International audienceEvolution should favour plasticity in dispersal decisions in response to spatial heterogeneity in social and environmental contexts. Sex differences in individual optimization of dispersal decisions are poorly documented in mammals, because species where both sexes commonly disperse are rare. To elucidate the sex-specific drivers governing dispersal, we investigated sex differences in condition dependence in the propensity and distance of natal dispersal in one such species, the roe deer, using fine-scale monitoring of 146 GPS-collared juveniles in an intensively monitored population in southwest France. Dispersal propensity increased with body mass in males such that 36% of light individuals dispersed, whereas 62% of heavy individuals did so, but there was no evidence for condition dependence in dispersal propensity among females. By contrast, dispersal distance increased with body mass at a similar rate in both sexes such that heavy dispersers travelled around twice as far as light dispersers. Sex differences in the strength of condition-dependent dispersal may result from different selection pressures acting on the behaviour of males and females. We suggest that females disperse prior to habitat saturation being reached, likely in relation to the risk of inbreeding. By contrast, natal dispersal in males is likely governed by competitive exclusion through male–male competition for breeding opportunities in this strongly territorial mammal. Our study is, to our knowledge, a first demonstration that condition dependence in dispersal propensity and dispersal distance may be decoupled, indicating contrasting selection pressures drive the behavioural decisions of whether or not to leave the natal range, and where to settle

    Back and forth: day–night alternation between cover types reveals complementary use of habitats in a large herbivore

    Get PDF
    Context The Complementary Habitat Hypothesis posits that animals access resources for different needs by moving between complementary habitats that can be seen as ‘resource composites’. These movements can occur over a range of temporal scales, from diurnal to seasonal, in response to multiple drivers such as access to food, weather constraints, risk avoidance and human disturbance. Within this framework, we hypothesised that large herbivores cope with human-altered landscapes through the alternate use of complementary habitats at both daily and seasonal scales. Objectives We tested the Complementary Habitat Hypothesis in European roe deer (Capreolus capreolus) by classifying 3900 habitat-annotated movement trajectories of 154 GPS-monitored individuals across contrasting landscapes. Methods We considered day-night alternation between open food-rich and closed refuge habitats as a measure of complementary habitat use. We first identified day–night alternation using the Individual Movement - Sequence Analysis Method, then we modelled the proportion of day–night alternation over the year in relation to population and individual characteristics. Results We found that day-night alternation is a widespread behaviour in roe deer, even across markedly different landscapes. Day–night alternation followed seasonal trends in all populations, partly linked to vegetation phenology. Within populations, seasonal patterns of open/closed habitat alternation differed between male and female adults, but not in juveniles. Conclusion Our results support the Complementary Habitat Hypothesis by showing that roe deer adjust their access to the varied resources available in complex landscapes by including different habitats within their home range, and sequentially alternating between them in response to seasonal changes and individual life history.publishedVersio

    Back and forth: day–night alternation between cover types reveals complementary use of habitats in a large herbivore

    Get PDF
    Context The Complementary Habitat Hypothesis posits that animals access resources for different needs by moving between complementary habitats that can be seen as ‘resource composites’. These movements can occur over a range of temporal scales, from diurnal to seasonal, in response to multiple drivers such as access to food, weather constraints, risk avoidance and human disturbance. Within this framework, we hypothesised that large herbivores cope with human-altered landscapes through the alternate use of complementary habitats at both daily and seasonal scales. Objectives We tested the Complementary Habitat Hypothesis in European roe deer (Capreolus capreolus) by classifying 3900 habitat-annotated movement trajectories of 154 GPS-monitored individuals across contrasting landscapes. Methods We considered day-night alternation between open food-rich and closed refuge habitats as a measure of complementary habitat use. We first identified day–night alternation using the Individual Movement - Sequence Analysis Method, then we modelled the proportion of day–night alternation over the year in relation to population and individual characteristics. Results We found that day-night alternation is a widespread behaviour in roe deer, even across markedly different landscapes. Day–night alternation followed seasonal trends in all populations, partly linked to vegetation phenology. Within populations, seasonal patterns of open/closed habitat alternation differed between male and female adults, but not in juveniles. Conclusion Our results support the Complementary Habitat Hypothesis by showing that roe deer adjust their access to the varied resources available in complex landscapes by including different habitats within their home range, and sequentially alternating between them in response to seasonal changes and individual life history

    Settle down! Ranging behaviour responses of roe deer to different capture and release methods

    Get PDF
    16openInternationalInternational coauthor/editorThe fitting of tracking devices to wild animals requires capture and handling which causes stress and can potentially cause injury, behavioural modifications that can affect animal welfare and the output of research. We evaluated post capture and release ranging behaviour responses of roe deer (Capreolus capreolus) for five different capture methods. We analysed the distance from the centre of gravity and between successive locations, using data from 14 different study sites within the EURODEER collaborative project. Independently of the capture method, we observed a shorter distance between successive locations and contextual shift away from the home range centre of gravity after the capture and release event. However, individuals converged towards the average behaviour within a relatively short space of time (between 10 days and one month). If researchers investigate questions based on the distance between successive locations of the home range, we recommend (1) initial investigation to establish when the animals start to behave normally again or (2) not using the first two to three weeks of data for their analysis. We also encourage researchers to continually adapt methods to minimize stress and prioritize animal welfare wherever possible, according to the Refinement of the Three R’sopenBergvall, Ulrika A; Morellet, Nicolas; Kjellander, Petter; Rauset, Geir R; Groeve, Johannes De; Borowik, Tomasz; Brieger, Falko; Gehr, Benedikt; Heurich, Marco; Hewison, A J Mark; Kröschel, Max; Pellerin, Maryline; SaĂŻd, Sonia; Soennichsen, Leif; Sunde, Peter; Cagnacci, FrancescaBergvall, U.A.; Morellet, N.; Kjellander, P.; Rauset, G.R.; Groeve, J.D.; Borowik, T.; Brieger, F.; Gehr, B.; Heurich, M.; Hewison, A.J.M.; Kröschel, M.; Pellerin, M.; SaĂŻd, S.; Soennichsen, L.; Sunde, P.; Cagnacci, F

    Settle Down! Ranging Behaviour Responses of Roe Deer to Different Capture and Release Methods

    Get PDF
    Simple Summary The study of animal movement in wild, free ranging species is fundamental for advancing knowledge on ecosystem relationships and for conservation. The deployment of bio-logging devices to this purpose (often GPS-collars in large mammals) requires relatively invasive procedures, such as capture, handling and release. Capture and manipulation cause behavioural modifications that are largely understudied in wild species and may affect both the welfare of animals and the output of the studies. We evaluated post capture and release ranging behaviour responses of a small deer species (roe deer Capreolus capreolus) for five different capture methods across 14 study sites within the EURODEER collaborative project. Roe deer showed modifications in their movement behaviour, independently of the capture method. However, individuals recovered rapidly, converging towards the average behaviour within a relatively short interval of time (between 10 days and one month), demonstrating a general resilience to such stressful events. We encourage researchers to continually adapt capture and handling methods so as to minimize stress and prioritize animal welfare. The fitting of tracking devices to wild animals requires capture and handling which causes stress and can potentially cause injury, behavioural modifications that can affect animal welfare and the output of research. We evaluated post capture and release ranging behaviour responses of roe deer (Capreolus capreolus) for five different capture methods. We analysed the distance from the centre of gravity and between successive locations, using data from 14 different study sites within the EURODEER collaborative project. Independently of the capture method, we observed a shorter distance between successive locations and contextual shift away from the home range centre of gravity after the capture and release event. However, individuals converged towards the average behaviour within a relatively short space of time (between 10 days and one month). If researchers investigate questions based on the distance between successive locations of the home range, we recommend (1) initial investigation to establish when the animals start to behave normally again or (2) not using the first two to three weeks of data for their analysis. We also encourage researchers to continually adapt methods to minimize stress and prioritize animal welfare wherever possible, according to the Refinement of the Three R's

    Day versus night use of forest by red and roe deer as determined by Corine Land Cover and Copernicus Tree Cover Density: assessing use of geographic layers in movement ecology

    Get PDF
    Diel use of forest and open habitats by large herbivores is linked to species-specific needs of multiple and heterogeneous resources. However, forest cover layers might deviate considerably for a given landscape, potentially affecting evaluations of animals’ habitat use. We assessed inconsistency in the estimates of diel forest use by red and roe deer at GPS location and home range (HR) levels, using two geographic layers: Tree Cover Density (TCD) and Corine Land Cover (CLC). We first measured the classification mismatch of red and roe deer GPS locations between TCD and CLC, also with respect to habitat units’ size. Then, we used generalized Least Squares models to assess the proportional use of forest at day and night at the GPS location and HR levels, both with TCD and CLC. About 20% of the GPS locations were inconsistently classified as forest or open habitat by the two layers, particularly within smaller habitat units. Overall proportion of forest and open habitat, though, was very similar for both layers. In all populations, both deer species used forest more at day than at night and this pattern was more evident with TCD than with CLC. However, at the HR level, forest use estimates were only marginally different between the two layers. When estimating animal habitat use, geographic layer choice requires careful evaluation with respect to ecological questions and target species. Habitat use analyses based on GPS locations are more sensitive to layer choice than those based on home ranges.publishedVersio

    Private trade and monopoly structures : the East India Companies and the commodity trade to Europe in the eighteenth century

    Get PDF
    Our research is about the trade in material goods from Asia to Europe over this period, and its impact on Europe’s consumer and industrial cultures. It entails a comparative study of Europe’s East India Companies and the private trade from Asia over the period. The commodities trade was heavily dependent on private trade. The historiography to date has left a blind spot in this area, concentrating instead on corruption and malfeasance. Taking a global history approach we investigate the trade in specific consumer goods in many qualities and varieties that linked merchant communities and stimulated information flows. We set out how private trade functioned alongside and in connection with the various European East India companies; we investigate how this changed over time, how it drew on the Company infrastructure, and how it took the risks and developed new and niche markets for specific Asian commodities that the Companies could not sustain

    Formation of Mobile Chromatin-Associated Nuclear Foci Containing HIV-1 Vpr and VPRBP Is Critical for the Induction of G2 Cell Cycle Arrest

    Get PDF
    HIV-1 Viral protein R (Vpr) induces a cell cycle arrest at the G2/M phase by activating the ATR DNA damage/stress checkpoint. Recently, we and several other groups showed that Vpr performs this activity by recruiting the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. While recruitment of this E3 ubiquitin ligase complex has been shown to be required for G2 arrest, the subcellular compartment where this complex forms and functionally acts is unknown. Herein, using immunofluorescence and confocal microscopy, we show that Vpr forms nuclear foci in several cell types including HeLa cells and primary CD4+ T-lymphocytes. These nuclear foci contain VPRBP and partially overlap with DNA repair foci components such as Îł-H2AX, 53BP1 and RPA32. While treatment with the non-specific ATR inhibitor caffeine or depletion of VPRBP by siRNA did not inhibit formation of Vpr nuclear foci, mutations in the C-terminal domain of Vpr and cytoplasmic sequestration of Vpr by overexpression of Gag-Pol resulted in impaired formation of these nuclear structures and defective G2 arrest. Consistently, we observed that G2 arrest-competent sooty mangabey Vpr could form these foci but not its G2 arrest-defective paralog Vpx, suggesting that formation of Vpr nuclear foci represents a critical early event in the induction of G2 arrest. Indeed, we found that Vpr could associate to chromatin via its C-terminal domain and that it could form a complex with VPRBP on chromatin. Finally, analysis of Vpr nuclear foci by time-lapse microscopy showed that they were highly mobile and stable structures. Overall, our results suggest that Vpr recruits the DDB1-CUL4A (VPRBP) E3 ligase to these nuclear foci and uses these mobile structures to target a chromatin-bound cellular substrate for ubiquitination in order to induce DNA damage/replication stress, ultimately leading to ATR activation and G2 cell cycle arrest

    Wherever I may roam-Human activity alters movements of red deer (Cervus elaphus) and elk (Cervus canadensis) across two continents

    Get PDF
    Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activit

    Red Oak Seedlings as Indicators of Deer Browse Pressure: Gauging the Outcome of Different White-Tailed Deer Management Approaches

    Get PDF
    After decades of high deer populations, North American forests have lost much of their previous biodiversity. Any landscape‐level recovery requires substantial reduc‐ tions in deer herds, but modern societies and wildlife management agencies appear unable to devise appropriate solutions to this chronic ecological and human health crisis. We evaluated the effectiveness of fertility control and hunting in reducing deer impacts at Cornell University. We estimated spring deer populations and planted Quercus rubra seedlings to assess deer browse pressure, rodent attack, and other factors compromising seedling performance. Oak seedlings protected in cages grew well, but deer annually browsed ≄60% of unprotected seedlings. Despite female ster‐ ilization rates of \u3e90%, the deer population remained stable. Neither sterilization nor recreational hunting reduced deer browse rates and neither appears able to achieve reductions in deer populations or their impacts. We eliminated deer sterilization and recreational hunting in a core management area in favor of allowing volunteer arch‐ ers to shoot deer over bait, including at night. This resulted in a substantial reduction in the deer population and a linear decline in browse rates as a function of spring deer abundance. Public trust stewardship of North American landscapes will require a fundamental overhaul in deer management to provide for a brighter future, and oak seedlings may be a promising metric to assess success. These changes will re‐ quire intense public debate and may require new approaches such as regulated com‐ mercial hunting, natural dispersal, or intentional release of important deer predators (e.g., wolves and mountain lions). Such drastic changes in deer management will be highly controversial, and at present, likely difficult to implement in North America. However, the future of our forest ecosystems and their associated biodiversity will depend on evidence to guide change in landscape management and stewardship
    • 

    corecore