267 research outputs found

    Research Activities for the DORIS Contribution to the Next International Terrestrial Reference Frame

    Get PDF
    For the preparation of ITRF2008, the IDS processed data from 1993 to 2008, including data from TOPEX/Poseidon, the SPOT satellites and Envisat in the weekly solutions. Since the development of ITRF2008, the IDS has been engaged in a number of efforts to try and improve the reference frame solutions. These efforts include (i) assessing the contribution of the new DORIS satellites, Jason-2 and Cryosat2 (2008-2011), (ii) individually analyzing the DORIS satellite contributions to geocenter and scale, and (iii) improving orbit dynamics (atmospheric loading effects, satellite surface force modeling. . . ). We report on the preliminary results from these research activities, review the status of the IDS combination which is now routinely generated from the contributions of the IDS analysis centers, and discuss the prospects for continued improvement in the DORIS contribution to the next international reference frame

    Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    Full text link
    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and spectral characterization. However, differential aberrations between the ExAO sensing path and the science path represent a critical limitation for the detection of giant planets with a contrast lower than a few 10−610^{-6} at very small separations (<0.3\as) from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase contrast methods to circumvent this issue and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental and simulation results are consistent, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. We then corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements. We estimated a contrast gain of 10 in the coronagraphic image at 0.2\as, reaching the raw contrast limit set by the coronagraph in the instrument. The simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the on-line measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could ease the observation of the cold gaseous or massive rocky planets around nearby stars.Comment: 13 pages, 12 figures, A&A accepted on June 3rd, 2016. v2 after language editin

    Semi-kinematic mount of the FIREBALL large optics

    Get PDF
    In the context of the NASA CNES FIREBALL balloon borne experiment, we present the design of a semi-kinematic mount to hold the 1 meter class mirrors of this mission. To maintain these large optics in a reasonable mass and price budgets we choose thin ULE mirrors with a thickness over diameter ratio of 1/16. Such thin mirrors require a multi support mount to reduce self weight deflection. Classical multi support mount used for ground based telescope would not survive the level of shock observed in a balloon experiment either at parachute opening or landing. To firmly maintain these mirrors in several points without noticeably deforming them we investigated the design of a two stages semi-kinematic mount composed of 24 monopods. We present the detailed design of this innovative mirror mount, the finite element modeling with the deduced optical wavefront deformation. During the FIREBALL integration and flight campaign in July 2007 at CSBF, we confirmed the validity of the mechanical concept by obtaining an image quality well within the required specifications. Variants of this approach are potentially applicable to large thin mirrors on ground-based observatories

    Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics

    Get PDF
    Optogenetic methods developed over the past decade enable unprecedented optical activation and silencing of specific neuronal cell types. However, light scattering in neural tissue precludes illuminating areas deep within the brain via free-space optics; this has impeded employing optogenetics universally. Here, we report an approach surmounting this significant limitation. We realize implantable, ultranarrow, silicon-based photonic probes enabling the delivery of complex illumination patterns deep within brain tissue. Our approach combines methods from integrated nanophotonics and microelectromechanical systems, to yield photonic probes that are robust, scalable, and readily producible en masse. Their minute cross sections minimize tissue displacement upon probe implantation. We functionally validate one probe design in vivo with mice expressing channelrhodopsin-2. Highly local optogenetic neural activation is demonstrated by recording the induced response—both by extracellular electrical recordings in the hippocampus and by two-photon functional imaging in the cortex of mice coexpressing GCaMP6

    APRIL is overexpressed in cancer: link with tumor progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BAFF and APRIL share two receptors – TACI and BCMA – and BAFF binds to a third receptor, BAFF-R. Increased expression of BAFF and APRIL is noted in hematological malignancies. BAFF and APRIL are essential for the survival of normal and malignant B lymphocytes, and altered expression of BAFF or APRIL or of their receptors (BCMA, TACI, or BAFF-R) have been reported in various B-cell malignancies including B-cell non-Hodgkin's lymphoma, chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma, and Waldenstrom's macroglobulinemia.</p> <p>Methods</p> <p>We compared the expression of <it>BAFF, APRIL, TACI and BAFF-R </it>gene expression in 40 human tumor types – brain, epithelial, lymphoid, germ cells – to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database.</p> <p>Results</p> <p>We found significant overexpression of <it>TACI </it>in multiple myeloma and thyroid carcinoma and an association between TACI expression and prognosis in lymphoma. Furthermore, <it>BAFF and APRIL </it>are overexpressed in many cancers and we show that <it>APRIL </it>expression is associated with tumor progression. We also found overexpression of at least one proteoglycan with heparan sulfate chains (HS), which are coreceptors for APRIL and TACI, in tumors where APRIL is either overexpressed or is a prognostic factor. APRIL could induce survival or proliferation directly through HS proteoglycans.</p> <p>Conclusion</p> <p>Taken together, these data suggest that APRIL is a potential prognostic factor for a large array of malignancies.</p

    Higher-precision radial velocity measurements with the SOPHIE spectrograph using octagonal-section fibers

    Full text link
    High-precision spectrographs play a key role in exoplanet searches using the radial velocity technique. But at the accuracy level of 1 m.s-1, required for super-Earth characterization, stability of fiber-fed spectrograph performance is crucial considering variable observing conditions such as seeing, guiding and centering errors and, telescope vignetting. In fiber-fed spectrographs such as HARPS or SOPHIE, the fiber link scrambling properties are one of the main issues. Both the stability of the fiber near-field uniformity at the spectrograph entrance and of the far-field illumination on the echelle grating (pupil) are critical for high-precision radial velocity measurements due to the spectrograph geometrical field and aperture aberrations. We conducted tests on the SOPHIE spectrograph at the 1.93-m OHP telescope to measure the instrument sensitivity to the fiber link light feeding conditions: star decentering, telescope vignetting by the dome,and defocussing. To significantly improve on current precision, we designed a fiber link modification considering the spectrograph operational constraints. We have developed a new link which includes a piece of octagonal-section fiber, having good scrambling properties, lying inside the former circular-section fiber, and we tested the concept on a bench to characterize near-field and far-field scrambling properties. This modification has been implemented in spring 2011 on the SOPHIE spectrograph fibers and tested for the first time directly on the sky to demonstrate the gain compared to the previous fiber link. Scientific validation for exoplanet search and characterization has been conducted by observing standard stars.Comment: 12 pages, 9 figures, Proceedings of SPIE 201

    Nanophotonic Neural Probes for in vivo Light Sheet Imaging

    Get PDF
    We present implantable silicon neural probes with nanophotonic waveguide routing networks and grating emitters for light sheet imaging. Fluorescein beam profiles, fluorescent bead imaging, and fluorescence brain imaging in vivo are presented

    Nanophotonic Neural Probes for in vivo Light Sheet Imaging

    Get PDF
    We present implantable silicon neural probes with nanophotonic waveguide routing networks and grating emitters for light sheet imaging. Fluorescein beam profiles, fluorescent bead imaging, and fluorescence brain imaging in vivo are presented

    Beam-Steering Nanophotonic Phased-Array Neural Probes

    Get PDF
    We demonstrate the first implantable nanophotonic neural probes with integrated silicon nitride phased arrays. Coherent beam-steering is achieved in brain tissue by wavelength tuning. Beam profiles, optogenetic stimulation, and functional imaging are validated in vitro

    Implantable photonic neural probes for light-sheet fluorescence brain imaging

    Get PDF
    Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for highspeed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes.Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components.Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose.Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses Conclusions: The neural probes can lead to new variants of LSFM for deep brain imaging and experiments in freely moving animals
    • …
    corecore