50 research outputs found

    a retrospective multicenter study

    Get PDF
    Funding This study was supported in part by a grant from the French government through the « Programme Investissement d’Avenir» (I-SITE ULNE) managed by the Agence Nationale de la Recherche (coVAPid project). Prof. Ignacio Martin-Loeches has been supported by SFI (Science Foundation Ireland), Grant number 20/COV/0038. The funders of the study had no role in the study design, data collection, analysis or interpretation, writing of the report or deci sion to submit for publication.BACKGROUND: Ventilator-associated pneumonia (VAP) is common in patients with severe SARS-CoV-2 pneumonia. The aim of this ancillary analysis of the coVAPid multicenter observational retrospective study is to assess the relationship between adjuvant corticosteroid use and the incidence of VAP. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort in 36 ICUs. Adult patients receiving invasive mechanical ventilation for more than 48 h for SARS-CoV-2 pneumonia were consecutively included between February and May 2020. VAP diagnosis required strict definition with clinical, radiological and quantitative microbiological confirmation. We assessed the association of VAP with corticosteroid treatment using univariate and multivariate cause-specific Cox's proportional hazard models with adjustment on pre-specified confounders. RESULTS: Among the 545 included patients, 191 (35%) received corticosteroids. The proportional hazard assumption for the effect of corticosteroids on the incidence of VAP could not be accepted, indicating that this effect varied during ICU stay. We found a non-significant lower risk of VAP for corticosteroid-treated patients during the first days in the ICU and an increased risk for longer ICU stay. By modeling the effect of corticosteroids with time-dependent coefficients, the association between corticosteroids and the incidence of VAP was not significant (overall effect p = 0.082), with time-dependent hazard ratios (95% confidence interval) of 0.47 (0.17-1.31) at day 2, 0.95 (0.63-1.42) at day 7, 1.48 (1.01-2.16) at day 14 and 1.94 (1.09-3.46) at day 21. CONCLUSIONS: No significant association was found between adjuvant corticosteroid treatment and the incidence of VAP, although a time-varying effect of corticosteroids was identified along the 28-day follow-up.publishersversionpublishe

    Diaphragm dysfunction, lung aeration loss and weaning-induced pulmonary oedema in difficult-to-wean patients

    No full text
    International audienceAbstract Background Diaphragm dysfunction and weaning-induced pulmonary oedema are commonly involved during weaning failure, but their physiological interactions have been poorly reported. Our hypothesis was that diaphragm dysfunction is not particularly associated with weaning-induced pulmonary oedema. Methods It was a single-centre and physiological study conducted in patients who had failed a first spontaneous breathing trial and who underwent a second trial. The diaphragm function was evaluated by measuring the tracheal pressure generated in response to a bilateral magnetic phrenic nerves stimulations. Weaning-induced pulmonary oedema was diagnosed in case of failure of the spontaneous breathing trial if patients exhibited signs of plasma concentration or echocardiographic diagnosis of pulmonary artery occlusion pressure elevation. Results Fifty-three patients were included and 31/53 (58%) failed the spontaneous breathing trial, including 24/31 (77%) patients with weaning-induced pulmonary oedema. Diaphragm dysfunction was present in 33/53 (62%) patients. Diaphragm dysfunction or weaning-induced pulmonary oedema were present in 26/31 (84%) of the patients who failed the spontaneous breathing trial. Weaning-induced pulmonary oedema occurred in 20/33 (61%) patients with a diaphragm dysfunction and in 4/20 (20%) patients without ( p = 0.005). Conclusion Weaning-induced pulmonary oedema was three times more frequent in case of diaphragm dysfunction. Even in case of diaphragm dysfunction, physicians might be encouraged to investigate the presence of weaning-induced pulmonary oedema during weaning failure

    Dyspnea and the electromyographic activity of inspiratory muscles during weaning from mechanical ventilation

    No full text
    International audienceAbstract Rationale Dyspnea, a key symptom of acute respiratory failure, is not among the criteria for spontaneous breathing trial (SBT) failure. Here, we sought (1) to determine whether dyspnea is a reliable failure criterion for SBT failure; (2) to quantify the relationship between dyspnea and the respective electromyographic activity of the diaphragm (EMGdi), the parasternal (EMGpa) and the Alae nasi (EMGan). Methods Mechanically ventilated patients undergoing an SBT were included. Dyspnea intensity was measured by the Dyspnea-Visual Analogic Scale (Dyspnea-VAS) at the initiation and end of the SBT. During the 30-min SBT or until SBT failure, the EMGdi was continuously measured with a multi-electrode nasogastric catheter and the EMGan and EMGpa with surface electrodes. Results Thirty-one patients were included, SAPS 2 (median [interquartile range]) 53 (37‒74), mechanically ventilated for 6 (3‒10) days. Seventeen patients (45%) failed the SBT. The increase in Dyspnea-VAS along the SBT was higher in patients who failed (6 [4‒8] cm) than in those who passed (0 [0‒1] cm, p = 0.01). The area under the receiver operating characteristics curve for Dyspnea-VAS was 0.909 (0.786–1.032). The increase in Dyspnea-VAS was significantly correlated to the increase in EMGan (Rho = 0.42 [0.04‒0.70], p < 0.05), but not to the increase in EMGpa (Rho = − 0.121 [− 0.495 to − 0.290], p = 0.555) and EMGdi (Rho = − 0.26 [− 0.68 to 0.28], p = 0.289). Conclusion Dyspnea is a reliable criterion of SBT failure, suggesting that Dyspnea-VAS could be used as a monitoring tool of the SBT. In addition, dyspnea seems to be more closely related to the electromyographic activity of the Alae nasi than of the diaphragm

    Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction

    No full text
    International audienceIntroduction : The objective was to compare the impact of three assistance levels of different modes of mechanical ventilation; neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV), and pressure support ventilation (PSV) on major features of patient-ventilator interaction.Methods : PSV, NAVA, and PAV were set to obtain a tidal volume (VT) of 6 to 8 ml/kg (PSV100, NAVA100, and PAV100) in 16 intubated patients. Assistance was further decreased by 50% (PSV50, NAVA50, and PAV50) and then increased by 50% (PSV150, NAVA150, and PAV150) with all modes. The three modes were randomly applied. Airway flow and pressure, electrical activity of the diaphragm (EAdi), and blood gases were measured. VT, peak EAdi, coefficient of variation of VT and EAdi, and the prevalence of the main patient-ventilator asynchronies were calculated.Results : PAV and NAVA prevented the increase of VT with high levels of assistance (median 7.4 (interquartile range (IQR) 5.7 to 10.1) ml/kg and 7.4 (IQR, 5.9 to 10.5) ml/kg with PAV150 and NAVA150 versus 10.9 (IQR, 8.9 to 12.0) ml/kg with PSV150, P <0.05). EAdi was higher with PAV than with PSV at level100 and level150. The coefficient of variation of VT was higher with NAVA and PAV (19 (IQR, 14 to 31)% and 21 (IQR 16 to 29)% with NAVA100 and PAV100 versus 13 (IQR 11 to 18)% with PSV100, P <0.05). The prevalence of ineffective triggering was lower with PAV and NAVA than with PSV (P <0.05), but the prevalence of double triggering was higher with NAVA than with PAV and PSV (P <0.05).Conclusions : PAV and NAVA both prevent overdistention, improve neuromechanical coupling, restore the variability of the breathing pattern, and decrease patient-ventilator asynchrony in fairly similar ways compared with PSV. Further studies are needed to evaluate the possible clinical benefits of NAVA and PAV on clinical outcomes

    Impact of earplugs and eye mask on sleep in critically ill patients: a prospective randomized study

    No full text
    International audienceBackgroundPoor sleep is common in intensive care unit (ICU) patients, where environmental factors contribute to reduce and fragment sleep. The objective of this study was to evaluate the impact of earplugs and eye mask on sleep architecture in ICU patients.MethodsA single-center randomized controlled trial of 64 ICU patients was conducted from July 2012 to December 2013. Patients were randomly assigned to sleep with or without earplugs and an eye mask from inclusion until ICU discharge. Polysomnography was performed on the first day and night following inclusion. The primary outcome was the proportion of stage N3 sleep over total sleep time. Secondary outcomes were other descriptors of sleep and major outcome variables.ResultsIn the intervention group, nine (30%) patients did not wear earplugs all night long. The proportion of N3 sleep was 21 [7–28]% in the intervention group and 11 [3–23]% in the control group (p = 0.09). The duration of N3 sleep was higher among the patients in the intervention group who wore earplugs all night long than in the control group (74 [32–106] vs. 31 [7–76] minutes, p = 0.039). The number of prolonged awakenings was smaller in the intervention group (21 [19–26] vs. 31 [21–47] in the control group, p = 0.02). No significant difference was observed between the two groups in terms of clinical outcome variables.ConclusionsEarplugs and eye mask reduce long awakenings and increase N3 duration when they are well tolerated

    ICU-acquired weakness, diaphragm dysfunction and long-term outcomes of critically ill patients

    No full text
    International audienceBackground: Intensive care unit (ICU)-acquired weakness and diaphragm dysfunction are frequent conditions, both associated with poor prognosis in critically ill patients. While it is well established that ICU-acquired weakness severely impairs long-term prognosis, the association of diaphragm dysfunction with this outcome has never been reported. This study investigated whether diaphragm dysfunction is associated with negative long-term outcomes and whether the coexistence of diaphragm dysfunction and ICU-acquired weakness has a particular association with 2-year survival and health-related quality of life (HRQOL).Methods: This study is an ancillary study derived from an observational cohort study. Patients under mechanical ventilation were enrolled at the time of their first spontaneous breathing trial. Diaphragm dysfunction was defined by tracheal pressure generated by phrenic nerve stimulation < 11 cmH2O and ICU-acquired weakness was defined by Medical Research Council (MRC) score < 48. HRQOL was evaluated with the SF-36 questionnaire.Results: Sixty-nine of the 76 patients enrolled in the original study were included in the survival analysis and 40 were interviewed. Overall 2-year survival was 67% (46/69): 64% (29/45) in patients with diaphragm dysfunction, 71% (17/24) in patients without diaphragm dysfunction, 46% (11/24) in patients with ICU-acquired weakness and 76% (34/45) in patients without ICU-acquired weakness. Patients with concomitant diaphragm dysfunction and ICU-acquired weakness had a poorer outcome with a 2-year survival rate of 36% (5/14) compared to patients without diaphragm function and ICU-acquired weakness [79% (11/14) (p < 0.01)]. Health-related quality of life was not influenced by the presence of ICU-acquired weakness, diaphragm dysfunction or their coexistence.Conclusions: ICU-acquired weakness but not diaphragm dysfunction was associated with a poor 2-year survival of critically ill patients

    Proportional assist ventilation relieves clinically significant dyspnea in critically ill ventilated patients.

    No full text
    International audienceIntroduction: Dyspnea is common and often severe symptom in mechanically ventilated patients. Proportional assist ventilation (PAV) is an assist ventilatory mode that adjusts the level of assistance to the activity of respiratory muscles. We hypothesized that PAV reduce dyspnea compared to pressure support ventilation (PSV).Patients and methods: Mechanically ventilated patients with clinically significant dyspnea were included. Dyspnea intensity was assessed by the Dyspnea-Visual Analog Scale (D-VAS) and the Intensive Care-Respiratory Distress Observation Scale (IC-RDOS) at inclusion (PSV-Baseline), after personalization of ventilator settings in order to minimize dyspnea (PSV-Personalization), and after switch to PAV. Respiratory drive was assessed by record of electromyographic activity of inspiratory muscles, the proportion of asynchrony was analyzed.Results: Thirty-four patients were included (73% males, median age of 66 [57-77] years). The D-VAS score was lower with PSV-Personalization (37 mm [20‒55]) and PAV (31 mm [14‒45]) than with PSV-Baseline (62 mm [28‒76]) (p < 0.05). The IC-RDOS score was lower with PAV (4.2 [2.4‒4.7]) and PSV-Personalization (4.4 [2.4‒4.9]) than with PSV-Baseline (4.8 [4.1‒6.5]) (p < 0.05). The electromyographic activity of parasternal intercostal muscles was lower with PAV and PSV-Personalization than with PSV-Baseline. The asynchrony index was lower with PAV (0% [0‒0.55]) than with PSV-Baseline and PSV-Personalization (0.68% [0‒2.28] and 0.60% [0.31‒1.41], respectively) (p < 0.05).Conclusion: In mechanically ventilated patients exhibiting clinically significant dyspnea with PSV, personalization of PSV settings and PAV results in not different decreased dyspnea and activity of muscles to a similar degree, even though PAV was able to reduce asynchrony more effectively
    corecore