8 research outputs found
Assay of the von Willebrand factor (VWF) propeptide to identify patients with type 1 von Willebrand disease with decreased VWF survival
Type 1 von Willebrand disease (VWD) is characterized by a partial quantitative deficiency of von Willebrand factor (VWF). Few VWF gene mutations have been identified that cause dominant type 1 VWD. The decreased survival of VWF in plasma has recently been identified as a novel mechanism for type 1 VWD. We report 4 families with moderately severe type 1 VWD characterized by low plasma VWF:Ag and FVIII:C levels, proportionately low VWF:RCo, and dominant inheritance. A decreased survival of VWF in affected individuals was identified with VWF half-lives of 1 to 3 hours, whereas the half-life of VWF propeptide (VWFpp) was normal. DNA sequencing revealed a single (heterozygous) VWF mutation in affected individuals, S2179F in 2 families, and W1144G in 2 families, neither of which has been previously reported. We show that the ratio of steady-state plasma VWFpp to VWF:Ag can be used to identify patients with a shortened VWF half-life. An increased ratio distinguished affected from unaffected individuals in all families. A significantly increased VWFpp/VWF:Ag ratio together with reduced VWF:Ag may indicate the presence of a true genetic defect and decreased VWF survival phenotype. This phenotype may require an altered clinical therapeutic approach, and we propose to refer to this phenotype as type-1C VWD
Syngeneic transplantation of hematopoietic stem cells that are genetically modified to express factor VIII in platelets restores hemostasis to hemophilia A mice with preexisting FVIII immunity
Although genetic induction of factor VIII (FVIII) expression in platelets can restore hemostasis in hemophilia A mice, this approach has not been studied in the clinical setting of preexisting FVIII inhibitory antibodies to determine whether such antibodies would affect therapeutic engraftment. We generated a line of transgenic mice (2bF8) that express FVIII only in platelets using the platelet-specific Ī±IIb promoter and bred this 2bF8 transgene into a FVIIInull background. Bone marrow (BM) from heterozygous 2bF8 transgenic (2bF8tg+/ā) mice was transplanted into immunized FVIIInull mice after lethal or sublethal irradiation. After BM reconstitution, 85% of recipients survived tail clipping when the 1100-cGy (myeloablative) regimen was used, 85.7% of recipients survived when 660-cGy (nonmyeloablative) regimens were used, and 60% of recipients survived when the recipients were conditioned with 440 cGy. Our further studies showed that transplantation with 1% to 5% 2bF8tg+/ā BM cells still improved hemostasis in hemophilia A mice with inhibitors. These results demonstrate that the presence of FVIII-specific immunity in recipients does not negate engraftment of 2bF8 genetically modified hematopoietic stem cells, and transplantation of these hematopoietic stem cells can efficiently restore hemostasis to hemophilic mice with preexisting inhibitory antibodies under either myeloablative or nonmyeloablative regimens
Gain-of-function GPIb ELISA assay for VWF activity in the Zimmerman Program for the Molecular and Clinical Biology of VWD
von Willebrand disease (VWD) is a common bleeding disorder, but diagnosis is sometimes challenging because of issues with the current von Willebrand factor (VWF) assays, VWF antigen (VWF:Ag) and VWF ristocetin cofactor activity (VWF:RCo), used for diagnosis. We evaluated 113 healthy controls and 164 VWD subjects enrolled in the T.S. Zimmerman Program for the Molecular and Clinical Biology of VWD for VWF:Ag, VWF:RCo, and a new enzyme-linked immunosorbent assay (ELISA)ābased assay of VWF-glycoprotein Ib (GPIb) interactions using a gain-of-function GPIb construct (tGPIbĪ±235Y;239V) as a receptor to bind its ligand VWF in an assay independent of ristocetin (VWF:IbCo ELISA). Healthy controls, type 1, 2A, 2M, and 2N subjects had VWF:RCo/VWF:Ag ratios similar to the ratio obtained with VWF:IbCo ELISA/VWF:Ag. Type 2B VWD subjects, however, had elevated VWF:IbCo ELISA/VWF:Ag ratios. Type 3 VWD subjects had undetectable (< 1.6 U/dL) VWF:IbCo ELISA values. As previously reported, VWF:RCo/VWF:Ag ratio was decreased with a common A1 domain polymorphism, D1472H, as was direct binding to ristocetin for a 1472H A1 loop construct. The VWF:IbCo ELISA, however, was not affected by D1472H. The VWF:IbCo ELISA may be useful in testing VWF binding to GPIb, discrimination of type 2 variants, and in the diagnosis of VWD as it avoids some of the pitfalls of VWF:RCo assays
Common VWF exon 28 polymorphisms in African Americans affecting the VWF activity assay by ristocetin cofactor
The diagnosis of von Willebrand disease relies on abnormalities in specific tests of von Willebrand factor (VWF), including VWF antigen (VWF:Ag) and VWF ristocetin cofactor activity (VWF:RCo). When examining healthy controls enrolled in the T. S. Zimmerman Program for the Molecular and Clinical Biology of von Willebrand disease, we, like others, found a lower mean VWF:RCo compared with VWF:Ag in African American controls and therefore sought a genetic cause for these differences. For the African American controls, the presence of 3 exon 28 single nucleotide polymorphisms (SNPs), I1380V, N1435S, and D1472H, was associated with a significantly lower VWF:RCo/VWF:Ag ratio, whereas the presence of D1472H alone was associated with a decreased ratio in both African American and Caucasian controls. Multivariate analysis comparing race, SNP status, and VWF:RCo/VWF:Ag ratio confirmed that only the presence of D1472H was significant. No difference was seen in VWF binding to collagen, regardless of SNP status. Similarly, no difference in activity was seen using a GPIb complex-binding assay that is independent of ristocetin. Because the VWF:RCo assay depends on ristocetin binding to VWF, mutations (and polymorphisms) in VWF may affect the measurement of āVWF activityā by this assay and may not reflect a functional defect or true hemorrhagic risk