212 research outputs found

    The JNK inhibitor, SP600125, potentiates the glial response and cell death induced by methamphetamine in the mouse striatum

    Get PDF
    This study investigates the effect of the selective Jun NH2-terminal kinase 1/2 (JNK1/2) inhibitor, (SP600125) on the striatal dopamine nerve terminal loss and on the increased interleukin-15 (IL-15) expression and glial response induced by methamphetamine (METH). Mice were given repeated low doses of METH (4Â mg/kg, i.p., three times separated by 3Â h) and killed 24Â h or 7 d after the last dose. SP600125 (30Â mg/kg, i.p) was administered 30Â min before the last METH injection. Results indicate that METH produced dopaminergic axonal neurotoxicity reflected as a marked decrease in the striatal density of tyrosine hydroxylase-immunoreactive (TH-ir) fibres and dopamine transporter-immunoreactivity (DAT-ir) 24Â h after dosing. These effects were not modified by SP600125. This compound also failed to prevent the long-term loss of dopamine levels and DAT observed 7 d following METH injection. Nevertheless, SP600125 potentiated METH-induced striatal cell loss reflected by an increase in Fluoro-Jade immunostaining, cleaved capase-3 immunoreactivity and the number of terminal deoxyncleotidyl transferase-mediated dUTP nick end labelling (TUNEL) positive cells. In line with a deleterious effect of JNK1/2 inhibition, SP600125 increased the astroglial and microglial response induced by METH and interfered with drug-induced IL-15 expression. Together these data indicate that, not only does SP600125 fail to protect against the dopaminergic damage induced by METH but also, in fact, it potentiates the glial response and the non-dopaminergic striatal cell loss caused by the drug. © 2013 CINP.Peer Reviewe

    Beneficial effects of the phytocannabinoid Δ9-THCV in L-DOPA-induced dyskinesia in Parkinson's disease

    Get PDF
    The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson's disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects. In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before. This objective was investigated after inducing dyskinesia by repeated administration of L-DOPA (i.p. at 10 mg/kg) in a genetic model of dopaminergic deficiency, Pitx3ak mutant mice, which serves as a useful model for testing anti-dyskinetic agents. The daily treatment of these mice with L-DOPA for two weeks progressively increased the time spent in abnormal involuntary movements (AIMs) and elevated their horizontal and vertical activities (as measured in a computer-aided actimeter), signs that reflected the dyskinetic state of these mice. Interestingly, when combined with L-DOPA from the first injection, Δ9-THCV delayed the appearance of all these signs and decreased their intensity, with a reduction in the levels of FosB protein and the histone pAcH3 (measured by immunohistochemistry), which had previously been found to be elevated in the basal ganglia in L-DOPA-induced dyskinesia. In addition to the anti-dyskinetic effects of Δ9-THCV when administered at the onset of L-DOPA treatment, Δ9-THCV was also effective in attenuating the intensity of dyskinesia when administered for three consecutive days once these signs were already present (two weeks after the onset of L-DOPA treatment). In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.Fil: Espadas, Isabel. INSTITUTO CAJAL ; CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS;Fil: Keifman, Ettel. INSTITUTO CAJAL ; CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Palomo Garo, Cristina. Universidad Complutense de Madrid; EspañaFil: Burgaz, Sonia. Universidad Complutense de Madrid; EspañaFil: García, Concepción. Universidad Complutense de Madrid; EspañaFil: Fernández Ruiz, Javier. Universidad Complutense de Madrid; EspañaFil: Moratalla, Rosario. INSTITUTO CAJAL ; CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

    Associative learning and CA3–CA1 synaptic plasticity are impaired in D1r Null, Drd1a–/– mice and in hippocampal siRNA silenced Drd1a mice

    Get PDF
    Associative learning depends on multiple cortical and subcortical structures, including striatum, hippocampus, and amygdala. Both glutamatergic and dopaminergic neurotransmitter systems have been implicated in learning and memory consolidation. While the role of glutamate is well established, the role of dopamine and its receptors in these processes is less clear. In this study, we used two models of dopamine D₁ receptor (D₁R, Drd1a) loss, D₁R knock-out mice (Drd1a–/–) and mice with intrahippocampal injections of Drd1a-siRNA (small interfering RNA), to study the role of D₁R in different models of learning, hippocampal long-term potentiation (LTP) and associated gene expression. D₁R loss markedly reduced spatial learning, fear learning, and classical conditioning of the eyelid response, as well as the associated activity-dependent synaptic plasticity in the hippocampal CA1–CA3 synapse. These results provide the first experimental demonstration that D₁R is required for trace eyeblink conditioning and associated changes in synaptic strength in hippocampus of behaving mice. Drd1a-siRNA mice were indistinguishable from Drd1a–/– mice in all experiments, indicating that hippocampal knockdown was as effective as global inactivation and that the observed effects are caused by loss of D₁R and not by indirect developmental effects of Drd1a–/–. Finally, in vivo LTP and LTP-induced expression of Egr1 in the hippocampus were significantly reduced in Drd1a–/– and Drd1a-siRNA, indicating an important role for D₁R in these processes. Our data reveal a functional relationship between acquisition of associative learning, increase in synaptic strength at the CA3–CA1 synapse, and Egr1 induction in the hippocampus by demonstrating that all three are dramatically impaired when D₁R is eliminated or reduced

    Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors

    Get PDF
    To investigate the role of A2A adenosine receptors in adaptive responses to chronic intermittent dopamine receptor stimulation, we compared the behavioral sensitization elicited by repeated L-DOPA treatment in hemiparkinsonian wild-type (WT) and A2A adenosine receptor knock-out (A2A KO) mice. Although the unilateral nigrostriatal lesion produced by intrastriatal injection of 6-hydroxydopamine was indistinguishable between WT and A2A KO mice, they developed strikingly different patterns of behavioral sensitization after daily treatment with low doses of L-DOPA for 3 weeks. WT mice initially displayed modest contralateral rotational responses and then developed progressively greater responses that reached a maximum within 1 week and persisted for the duration of the treatment. In contrast, any rotational behavioral sensitization in A2A KO mice was transient and completely reversed within 2 weeks. Similarly, the time to reach the peak rotation was progressively shortened in WT mice but remained unchanged in A2A KO mice. Furthermore, daily L-DOPA treatment produced gradually sensitized grooming in WT mice but failed to induce any sensitized grooming in A2A KO mice. Finally, repeated L-DOPA treatment reversed the 6-OHDA-induced reduction of striatal dynorphin mRNA in WT but not A2A KO mice, raising the possibility that the A2A receptor may contribute to L-DOPA-induced behavioral sensitization by facilitating adaptations within the dynorphin-expressing striatonigral pathway. Together these results demonstrate that the A2A receptor plays a critical role in the development and particularly the persistence of behavioral sensitization to repeated L-DOPA treatment. Furthermore, they raise the possibility that the maladaptive dyskinetic responses to chronic L-DOPA treatment in Parkinson's disease may be attenuated by A2A receptor inactivation.Peer Reviewe

    Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice

    Get PDF
    The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson's disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers

    Association of Right Breast and Kidney Malignant Tumors. A Case Report. 2008

    Get PDF
    El cáncer renal de células granulares es un tumor que aparece con frecuencia en nuestra área, pero, pero encontrarlo asociado a células  ductales de mama es bastante  extraño. Se hace un reporte de caso de una paciente de 53 años quien fue diagnosticada con ambos tipos de tumores, confirmado histológicamente  en la parte derecha del cuerpo y con un período de ocho años entre ellos. Nada similar se encontrará en la literatura nacional e internacional consultada.Renal granular cells cancer is a frequently tumor encountered in our area, but to find it associated to breast ductal cells cancer is quite rare. We report a case of a 53 year old female patient, who was diagnosed with both kinds of tumors, histologically confirmed; on the rigth side of the body and with a period between them of 8 years. Nothing similar was found in the national and international consulted literature

    Sex-specific behavioral and neurogenic responses to cocaine in mice lacking and blocking dopamine D1 or dopamine D2 receptors

    Get PDF
    Adult neurogenesis in rodents is modulated by dopaminergic signaling and inhibited by cocaine. However, the sex-specific role of dopamine D1 and D2 receptors (D1R, D2R) in the deleterious effect of cocaine on adult neurogenesis has not been described yet. Here, we explored sex differences in (a) cell proliferation (5′-bromo-2′-deoxyuridine [BrdU]), (b) neural precursor (nestin), (c) neuronal phenotype (BrdU/β3-tubulin), and (d) neuronal maturity (NeuN) in the subventricular zone (SVZ) of the lateral ventricles and striatum of mice with genetic deletion (D1, D2) or pharmacological blockage (SCH23390: 0.1 mg/kg/day/5 days; Raclopride: 0.3 mg/kg/day/5 days) of D1R and D2R, and treated (10 mg/kg/day/5 days) and then challenged (5 mg/kg, 48 hr later) with cocaine. Results indicated that hyperactivity responses to cocaine were absent in D1 mice and reduced in SCH23390-treated mice. Activity responses to cocaine were reduced in D2 males, but absent in D2 females and increased in Raclopride-treated females. D1R deletion blocked the deleterious effect of cocaine on SVZ cell proliferation in males. Cocaine-exposed D1 males also had reduced neuronal phenotype of SVZ newborn cells and increased striatal neuronal maturity. D2 mice had lower proliferative and neural precursor responses. Cocaine in D2 females or coadministered with Raclopride in wild-type females improved SVZ cell proliferation, an effect that positively correlated with plasma brain-derived neurotrophic factor (BDNF) concentrations. In conclusion, the sex-specific D1R and D2R signaling on SVZ cell proliferation, neural progenitor and neuronal maturity is differentially perturbed by cocaine, and BDNF may be required to link D2R to neuroplasticity in cocaine addiction in females.Consejería de Salud, Junta de Andalucía, Grant/Award Number: C1-0049-2019; Instituto de Salud Carlos III, Grant/Award Numbers: CP19/00068, CPII17/00024, CPII19/00022, CPII19/00031, PI19/01577, PI19/00886, PI17/02026, RD16/0017/0001; Ministerio de Sanidad, Servicios Sociales e Igualdad, Grant/Award Numbers: PND2017/043, PND2018/033, PND2018/044, PND2019/04

    Diabetes Causes Dysfunctional Dopamine Neurotransmission Favoring Nigrostriatal Degeneration in Mice

    Get PDF
    This article also appears in: Special Collection: COVID-19 Resources.[Background]: Numerous studies indicate an association between neurodegenerative and metabolic diseases. Although still a matter of debate, growing evidence from epidemiological and animal studies indicate that preexisting diabetes increases the risk to develop Parkinson's disease. However, the mechanisms of such an association are unknown.[Objectives]: We investigated whether diabetes alters striatal dopamine neurotransmission and assessed the vulnerability of nigrostriatal neurons to neurodegeneration.[Methods]: We used streptozotocin‐treated and genetically diabetic db/db mice. Expression of oxidative stress and nigrostriatal neuronal markers and levels of dopamine and its metabolites were monitored. Dopamine release and uptake were assessed using fast‐scan cyclic voltammetry. 6‐Hydroxydopamine was unilaterally injected into the striatum using stereotaxic surgery. Motor performance was scored using specific tests.[Results]: Diabetes resulted in oxidative stress and decreased levels of dopamine and its metabolites in the striatum. Levels of proteins regulating dopamine release and uptake, including the dopamine transporter, the Girk2 potassium channel, the vesicular monoamine transporter 2, and the presynaptic vesicle protein synaptobrevin‐2, were decreased in diabetic mice. Electrically evoked levels of extracellular dopamine in the striatum were enhanced, and altered dopamine uptake was observed. Striatal microinjections of a subthreshold dose of the neurotoxin 6‐hydroxydopamine in diabetic mice, insufficient to cause motor alterations in nondiabetic animals, resulted in motor impairment, higher loss of striatal dopaminergic axons, and decreased neuronal cell bodies in the substantia nigra.[Conclusions]: Our results indicate that diabetes promotes striatal oxidative stress, alters dopamine neurotransmission, and increases vulnerability to neurodegenerative damage leading to motor impairment.Funded by the Spanish Ministries of Economy and Competitiveness (grants BFU2014‐52149‐R and BFU2017‐89336‐R to M.V., SAF2016‐78207‐R and PCIN‐2015‐098 to R.M., and BFU2017‐88393‐P to E.D.M.) and of Health, Social Services and Equality (PNSD‐2016I033 to R.M.) and by the Ramón Areces Foundation (ref. 172275 to R.M.). Supported by Medical Research Council UK iCASE award (to S.J.C., R.A.), a Biotechnology and Biological Sciences Research Council UK studentship (to S.V.M.), and Parkinson's UK (J‐1403 to S.J.C.). Partially supported by FEDER funds. CIBERDEM and CIBERNED are initiatives of the Instituto de Salud Carlos III. I.P.T. was supported by a fellowship from the Spanish Ministry of Education, Culture and Sports (FPU 14/04457).Peer reviewe

    Effects of supply with glutamine on antioxidant system and lipid peroxidation in patients with parenteral nutrition

    Get PDF
    Introducción: En el paciente crítico hay una continua producción de especies reactivas de oxígeno (ERO) que necesitan se neutralizadas para evitar el estrés oxidativo (EO). Entre las defensas antioxidantes endógenas, el sistema glutatión (GSH) es cuantitativamente el más importante, pero en situaciones de estrés severo se encuentra disminuido. Para incrementarlo, la suplementación con glutamina ha demostrado ser efectiva, ejerciendo protección contra el daño oxidativo y reduciendo la morbi-mortalidad. Objetivo: Valorar el efecto de la adición de un dipéptido alanyl-glutamina a la NP sobre la peroxidación lipídica y el metabolismo del glutatión y su relación con la morbilidad de los pacientes críticos. Métodos: Determinación, mediante técnicas espectrofotométricas, de glutatión peroxidasa, glutatión reductasa, glutatión total y malonilaldehído al ingreso y tras siete días de estancia en la Unidad de Cuidados Intensivos (UCI) de 20 pacientes mayores de 18 años con tratamiento nutricional parenteral. Resultados: El grupo de pacientes que recibió nutrición parenteral con adición de glutamina experimentó aumentos signifcativos a la semana de tratamiento nutricional en la concentración del glutatión total (42,35 ± 13 vs 55,29 ± 12 μmol/l; p < 0,05), junto a un incremento de la actividad de la enzima glutatión peroxidasa (470 ± 195 vs 705 ± 214 μmol/l; p < 0,05). En cambio, el grupo con nutrición parenteral convencional no presentó modificaciones significativas en ninguno de los parámetros estudiados (p > 0,05). Sin embargo, tanto la mortalidad como la estancia en UCI no fue diferente para los grupos estudiados, mientras que si se observó una menor gravedad, valorada por e SOFA score, en el grupo de pacientes que recibieron glutamina (SOFA 5 ± 2 vs 8 ± 1,8; p < 0,05). Conclusiones: El aporte de glutamina en pacientes críticos mejora las defensas antioxidantes, lo que repercute en una menor peroxidación lipídica y menor morbilidad durante la estancia en UCI.Introduction: In the critically ill patient, there is a continuous production of reactive oxygen species (ROS) that need to be neutralized to prevent oxidative stress (OS). Quantitatively speaking, the glutathione system (GSH) is the most important anti-oxidant endogenous defense. To increase it, glutamine supplementation has been shown to be effective by protecting against the oxidative damage and reducing the morbimortality. Objective: To assess the effect of adding an alanylglutamine dipeptide to PN on lipid peroxidation lipidica and glutathione metabolism, as well as its relationship with morbidity in critically ill patients. Methods: Determination through spectrophotometry techniques of glutathione peroxidase, glutathione reductase, total glutathione, and maloniladdehyde at admission adn after seven days of hospitalization at the Intensive Care Unit (ICU) in 20 patients older than 18 years on parenteral nutrition therapy. Results: The group of patients receiving parenteral nutrition with glutamine supplementation had significant increases in total glutathione (42.35 ± 13 vs 55.29 ± 12 μmol/l; p < 0.05) and the enzymatic activity of glutathione peroxidasa (470 ± 195 vs 705 ± 214 μmol/l; p < 0.05) within one week of nutritional therapy, whereas the group on conventional parenteral nutrition did not show significant changes of any of the parameters studied (p > 0.05). However, both mortality and ICU stay were not different between the study group, whereas the severity (asessed by the SOFA score) was lower in the group of patients receiving glutamine (SOFA 5 ± 2 vs 8 ± 1.8; p < 0.05). Conclusions: Glutamine intake in critically ill patients improves the antioxidant defenses, which leads to lower lipid peroxidation and lower morbidity during admission at the ICU.Éste estudio ha sido financiado en parte por el FIBAO y el premio Fressenius/SENPE 2006

    Studying sporadic and familial Alzheimer's disease on iPSC-derived hippocampal and cortical neurons: effect of APOE and Presenilin1

    Get PDF
    Alzheimer's disease (AD) is pathologically characterised by the presence of amyloid-beta plaques, neurofibrillary tangles containing hyperphosphorylated Tau protein, neuroinflammation and neuronal death leading to progressive cognitive impairment. The ¿4 allele of the gene encoding apolipoprotein E (APOE), which is mainly expressed in glial cells, is the strongest genetic risk factor for sporadic AD. Increasing evidence has shown that APOE4 may disrupt normal astrocyte activity, potentially contributing to AD pathology, but the impact of different APOE alleles on astrocyte differentiation, maturation and function is not yet fully understood. To go in depth on these questions, we obtained induced pluripotent stem cells (iPSCs) from fibroblasts of AD patients carrying ¿3 and ¿4 alleles (in homozygosis) and from healthy patients. We also used gene-edited iPSC lines homozygous for the main APOE variants and an APOE knock-out line. iPSC-derived human astrocytes were generated by establishing a differentiation protocol through the consecutive addition of small molecules and growth factors, and the expression of typical markers (GFAP, GLT1, AQP4 and S100beta) and APOE was analysed. In addition, astrocytes exhibited functional features like glutamate uptake capacity and calcium waves production. They also responded to an inflammatory stimulus (IL-1beta and TNF-alpha) or to the presence of amyloid-beta 1-42 peptide by changing their morphology and increasing the expression levels of pro-inflammatory factors and cytokines. Our results shed light on the potential dual role of APOE polymorphism and the individual¿s genetic background in favouring or perhaps preventing AD pathology
    corecore