1,391 research outputs found

    Systematic Molecular Differentiation in Starless Cores

    Get PDF
    (Abridged) We present evidence that low-mass starless cores, the simplest units of star formation, are systematically differentiated in their chemical composition. Molecules including CO and CS almost vanish near the core centers, where the abundance decreases by one or two orders of magnitude. At the same time, N2H+ has a constant abundance, and the fraction of NH3 increases toward the core center. Our conclusions are based on a study of 5 mostly-round starless cores (L1498, L1495, L1400K, L1517B, and L1544), which we have mappedin C18O(1-0), C17O(1-0), CS(2-1), C34S(2-1), N2H+(1-0), NH3(1,1) and (2,2), and the 1.2 mm continuum. For each core we have built a model that fits simultaneously the radial profile of all observed emission and the central spectrum for the molecular lines. The observed abundance drops of CO and CS are naturally explained by the depletion of these molecules onto dust grains at densities of 2-6 10^4 cm-3. N2H+ seems unaffected by this process up to densities of several 10^5, while the NH3 abundance may be enhanced by reactions triggered by the disappearance of CO from the gas phase. With the help of our models, we show that chemical differentiation automatically explains the discrepancy between the sizes of CS and NH3 maps, a problem which has remained unexplained for more than a decade. Our models, in addition, show that a combination of radiative transfer effects can give rise to the previously observed discrepancy in the linewidth of these two tracers. Although this discrepancy has been traditionally interpreted as resulting from a systematic increase of the turbulent linewidth with radius, our models show that it can arise in conditions of constant gas turbulence.Comment: 25 pages, 9 figures, accepted by Ap

    Molecular Clouds as Ensembles of Transient Cores

    Get PDF
    We construct models of molecular clouds that are considered as ensembles of transient cores. Each core is assumed to develop in the background gas of the cloud, grow to high density and decay into the background. The chemistry in each core responds to the dynamical state of the gas and to the gas-dust interaction. Ices are deposited on the dust grains in the core's dense phase, and this material is returned to the gas as the core expands to low density. The cores of the ensemble number typically one thousand and are placed randomly in position within the cloud, and are assigned a random evolutionary phase. The models are used to generate molecular line contour maps of a typical dark cloud. These maps are found to represent extremely well the characteristic features of observed maps of the dark cloud L673, which has been observed at both low and high resolutions. The computed maps are found to exhibit the general morphology of the observed maps, and to generate similar sizes of emitting regions, molecular column densities, and the separations between peaks of emissions of various molecular species. The models give insight into the nature of molecular clouds and the dynamical processes occurring within them, and significantly constrain dynamical and chemical processes in the interstellar medium.Comment: 29 pages, 8 figures. Accepted for publication in Ap

    Revealing Polylepis microphylla as a suitable tree species for dendrochronology and quantitative wood anatomy in the Andean montane forests

    Get PDF
    In the tropical Andes climate change is expected to increase temperatures and change precipitation patterns. To overcome the lack of systematic weather records that limits the performance of climate models in this region, the use of the environmental information contained in tree rings from tropical Andean species have been found useful to reconstruct spatio-temporal climate variability. Because classical dendrochronology based on ring-width patterns is often challenging in the tropics, alternative approaches such as Quantitative Wood Anatomy (QWA) based on the measurement and quantification of anatomical traits within tree rings can be a significant advance in the field. Here we assess the dendrochronological potential of Polylepis microphylla and its climate sensitivity by using i) classic dendrochronological methods to generate the first Tree-ring Width (TRW) chronology for this tree species spanning from 1965 to 2018; ii) radiocarbon (¹⁴C) analyses as an independent validation method to assess the annual periodicity of the tree growth layers; and iii) QWA to generate tree-ring annual records of the number (VN) and size (VS) of vessels to investigate the climate sensitivity of these anatomical traits. The annual periodicity in P. microphylla radial growth was confirmed by both dendrochronological and ¹⁴C analyses. We found that VN and VS are promising new proxies to reconstruct climate variability in this region and that they provide different information than TRW. While TRW provides information at inter-annual resolution (i.e., year-to-year variability), VN and VS generated with sectorial QWA provide intra-annual resolution for each stage of the growing process. The TRW and the anatomical traits (i.e., VN and VS) showed strong positive correlation with maximum temperature for different periods of the growing season: while VS is higher with warmer conditions prior to the growing season onset, tree-rings are wider and present higher number of vessels when warmer conditions occur during the current growing season. Our findings pointed out the suitability of P. microphylla for dendrochronological studies and may suggest a good performance of this species under the significant warming expected according to future projections for the tropical Andes.Fil: Rodríguez Morata, C.. Columbia University; Estados UnidosFil: Pacheco Solana, A.. Columbia University; Estados UnidosFil: Ticse Otarola, Ginette Vilma Alicia. Universidad Continental; Perú. Asociación ANDINUS; PerúFil: Boza Espinoza, T. E.. Pontificia Universidad Católica de Perú; PerúFil: Crispín-DelaCruz, D.B.. Universidad Federal Rural Pernambuco; Brasil. Universidad Continental; PerúFil: Santos, G. M.. University of California; Estados UnidosFil: Morales, Mariano Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Continental; PerúFil: Requena Rojas, Edilson Jimmy. Universidad Continental; PerúFil: Andreu Hayles, Laia. Institució Catalana de Recerca I Estudis Avançats; España. Consejo Superior de Investigaciones Científicas. Centre de Recerca Ecológica I Aplicacions Forestals; España. Columbia University; Estados Unido

    Spatially Resolved Chemistry in Nearby Galaxies I. The Center of IC 342

    Full text link
    We have imaged emission from the millimeter lines of eight molecules--C2H, C34S, N2H+, CH3OH, HNCO, HNC, HC3N, and SO--in the central half kpc of the nearby spiral galaxy IC 342. The 5" (~50 pc) resolution images were made with OVRO. Using these maps we obtain a picture of the chemistry within the nuclear region on the sizescales of individual GMCs. Bright emission is detected from all but SO. There are marked differences in morphology for the different molecules. A principal component analysis is performed to quantify similarities and differences among the images. This analysis reveals that while all molecules are to zeroth order correlated, that is, they are all found in dense molecular clouds, there are three distinct groups of molecules distinguished by the location of their emission within the nuclear region. N2H+, C18O, HNC and HCN are widespread and bright, good overall tracers of dense molecular gas. C2H and C34S, tracers of PDR chemistry, originate exclusively from the central 50-100 pc region, where radiation fields are high. The third group of molecules, CH3OH and HNCO, correlates well with the expected locations of bar-induced orbital shocks. The good correlation of HNCO with the established shock tracer molecule CH3OH is evidence that this molecule, whose chemistry has been uncertain, is indeed produced by processing of grains. HC3N is observed to correlate tightly with 3mm continuum emission, demonstrating that the young starbursts are the sites of the warmest and densest molecular gas. We compare our HNC images with the HCN images of Downes et al. (1992) to produce the first high resolution, extragalactic HCN/HNC map: the HNC/HCN ratio is near unity across the nucleus and the correlation of both of these gas tracers with the star formation is excellent. (Abridged).Comment: 54 pages including 10 figures and 8 tables. Accepted for publication in Ap

    NEXT-100 Technical Design Report (TDR). Executive Summary

    Get PDF
    In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (bbonu) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 times8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.Comment: 32 pages, 22 figures, 5 table
    corecore